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Abstract/Preface

This report presents some results for studies done under the ONR contract N00014-84-K

-0425. The work was aimed at developing time-varying controller design theory for potential

applications to robot manipulator control. The reporticomprise of the following four parts,,

Part 1 Robot Manipulator Controller Design: It was demonstrated that time-varying

controllers can produce more desirable performances than those of time-invariant ones.

Part 2) Stability of Time-Varying System: An important observation was made

regarding stability in the design of time-varying systems. Implications of magnitude of change,

and rate of change of parameter variations on stability are noted.

Part i Learning Controller Design: One particular time-varying controller design

approach that is of most interest to robot control is the learning control method. This part presents

some preliminary results on learning control theory. .

Part 4) A collection of papers on work which are in part supported by this ONR
contract.
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Part 1 ~%

Robot Manipulator Controller Design
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CHAPTER I

I NTRODUCT ION

1 .1 Introduction

Industrial robots which are defined as computer controlled

mechanical manipulators have become increasingly important in

" industrial automation in recent years. They can be programmed to

perform the tasks, without human intervention, of arc welding,

ii.

paint spraying, assembly, foundary operation, etc.

A manipulator can be described as a series of linksconnected at joints. Typically, they have three to six joints

aa

The control system design for robot anipulators is

basically the problem of controlling a multi-input nonlinear

.. system. The general objective is to achieve a very accurate, fast

and smooth tracking while rejecting a broad class of disturbances,

pa"intl aing parameter variations.

The simplest form of control used for manipulators is the

onenee jcontrol ( 1y-3), where the entire t six is

predetermined and is applied regardless of any errors which

develop. The trajectory is preplanned or prerecorded and the

a''
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inputs do not depend on output measurements. Disturbance rejection

and accurate path tracking can only be achieved by making the robot

extremely rigid. This approach which is comonly used today implies

precise gear trains and actuators as veil as very strong structural

members. The speed of such systems is generally limited by the

force-producing capacity and speed of the actuators, and by the

excitation of high-frequency structural modes of the linkage.

Linear feedback controls have also been designed for

manipulators. The most widely used method is the independent joint

control ([4],[5]), where basically each joint is independently

controlled by a linear PD controller. Gravity compensation is also

provided. The 'computed torque' technique is an illustration of

the independent joint control. We will present it in detail in J,

chapter IV.

A pseudo-linear feedback law with nonlinear pre- and post-

processing of measurements was developed by Raibert and Craig [61.

In practice, this kind of linear control is easy to implement,

works relatively well and is reliable. However, adequate

disturbance accomodation requires high-power actuators and this

technique becomes less effective when high speed and accurate

tracking are required.

In order to improve performances (speed, accuracy,

transient response, etc.), more sophisticated methods have been

developed in recent years.

Adaptive control schemes based on the model reference

principle have been proposed ([7J-[91). Lee and Chung [10]

%J
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presented an adaptive control based on the first order

linearization of the nonlinear dynamic equations. In general,

these adaptive strategies are characterized by complex algorithms 9

which may lead to complexity comparable to that required for real

time computation of inverse kinematics.

Nonlinear feedback laws have also been proposed by many

authors ([111,12]). Young [131 used sliding mode theory to

develop nonlinear switching feedbacks.

Since the mid-1970's, the technique of linearizing a

nonlinear system via nonlinear feedbacks has been used and

developed into what is known today as 'differential geometric

C. control theory' ([141-[251). The earlier work (1976) was conducted

by Hemami and Camano [211 who applied this technique to a simple

locomotion system which resulted in uncoupled subsystems. In 1982,

Freund [221 through a 'global nonlinear feedback law' obtained

uncoupled second order systems. This method is based on

partitioning the robot dynamic equations. But one drawback of this r

method is that the number of inputs should equal the number of

outputs.

Recently, a theorem giving necessary and sufficient

%J conditions to linearize a nonlinear system via a coordinate

transformation and nonlinear feedbacks has been given. This result
do

is due in part to Brockett (23], Jakubczyk and Respondek [24] and

finalized by Hunt, Su and Meyer ([181,125]).

In this thesis our main work will be, using this feedback

linearization theorem, to show that a given n-joint robot

%.'"
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manipulator can be linearized through a coordinate transform and .
S.

nonlinear feedbacks. The resulting linear system is composed of n

uncoupled second order time invariant subsystems. The control

problem is then reduced to controlling these n uncoupled second

order subsystems. A general expression of the explicit feedback

". controls will be derived. Two examples will be given, a two and

three joint robot manipulator, with accompanying computer
A''

simulation study. -

%A
1.2 Organization of the Thesis

In chapter II, we discuss the robotics problem in terms of

trajectory planning and control approach to be followed for a given

*m  robot task.

Chapter III deals with the manipulator dynamics. To design

a robot control system, one needs a mathematical model of the

robot. Such a model can be obtained by Newton-Euler or Lagrangian

mechanics.

Chapter IV is the main part of the thesis. We present

- first a robot controller using the 'computed torque' technique.

Then, after giving some theoretical background needed for further

developments, we state the feedback linearization theorem [25].

Using this theorem, we linearize the manipulator dynamic equations

and derive a general form of the nonlinear feedback law. Then, we

illustrate by two examples with computer simulations.

Finally, the summary and conclusions are given in chapter "5

V.

L
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CHAPTER II

p ",

TRAJECTORY PLANNING AND CONTROL

The basic problem in robotics is planning trajectories to

solve for some specified task and then controlling the robot to

achieve those trajectories.

The trajectory planning consists of computing a desired

sequence of positions, velocities and accelerations of some point

which is usually the robot hand. This is in fact the so called

kinematics problem which will be discussed in the next section.

The control strategy to be adopted depends on the nature of

the specified task itself. For example, if the robot is permitted

to travel between the initial and final positions, a simple point

p to point control is adequate. In this chapter we will give a brief

survey of these control strategies.

.
___________.'-2 2.1I Kinematics '

Kinematics of a manipulator ([261,[271) can be defined as

being the position, velocity and acceleration relationships among

the links of the manipulator.

In planning a trajectory, one is primar.ily interested in

the position of the hand with respect to the work space, which is

A called the hand space of the manipulator. A hand configuration in

hand space consists of position described by a vector P and

,
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orientation described by three orthogonal vectors: the approach

vector a, the orientation vector o and the normal vector n.

A robot task is naturally specified in terms of its hand

configuration in hand space. it is a transformation (matrix:

(n(t), *(t), 1(t), *(t)), called the forward kinematics transform

which relates the hand frame to the robot base frame.

To achieve the desired configuration, one has to command

the joint actuators. To do so, we must be able to find the

corresponding joint coordinates (in joint space) from the desired

hand configuration. This inverse problem is referred to as the

inverse kinematics transform, or arm solution.

The direct kinematics has a straightforward solution,

whereas problems can occur when computing the inverse kinematics.

The solution may not be unique and singularities may occur,

depending on the geometrical configuraion of the arm.

2.2 Control 1

As mentioned previously, the control strategy to be

considered depends on the assigned robot task. These strategies

are classified as follows:

2.2.1 Point to point control

If there are no path constraints, if the work space is free

and if coordination with external moving objects (e.g. conveyors)

is not required, positional control can be used to ensure that the
'-

hand passes through the specified corner points of the path. No

control over position is required between points. The path of the

•a.
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hand in such control schemes is unpredictable and the robot

exhibits a tendency to stop at each point.

In many cases we require that the hand moves smoothly along

a prescribed path (path tracking). This involves many computations

of corresponding desired joint coordinates (through the inverse

kinematic transform). Two cases occur here: off-line path

control, in which computations are performed before the motion

starts and on-line path control, in which calculations are

performed in real time.

s2.2.2 Off-line path control

If the work space is free and no external coordination is

needed, the hand path and the corresponding desired joint

coordinates can be specified before the motion is to start. To

accomplish a smooth motion (smooth accelerations), some techniques

are available, for example the path control polynomials technique

[261. p

2.2.3 On-line path control

When external coordination is needed, then path points and

desired joint coordinates have to be computed on-line. This

constraint is computationally very difficult, and such a strategy

is in practice used when accurate path tracking is important and

the manipulator moves slowly. There are control techniques which

compromise between full on-line path control and point to point

control, in order to achieve smooth and accurate tracking (e.g.,

Joint interpolated control ((261,[281)).



3

2.2.4 Collision free path control

If the work space is changing and not free, then collision

free paths must be followed. This makes path control very complex

if on-line path control is required.

2.2.5 Force control

in some situations, the manipulator is constrained by

external positional constraints. Two common situations can happen:

guarded motion, when the manipulator is about to contact a surface;

4% and compliant motion, when the manipulator is in continuing contact

with a surface. In those cases, one has to control the forces

instead of the positions and we will be relating forces in hand

* space to torques (and/or forces) in joint space.

Some controllers can simultaneously control forces along

certain coordinate axes and control positions along the remaining

axes. They are referred to as hybrid controllers.

%
I%
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CHAPTER III

DYNAMICS OF A ROBOT MANIPULATOR

A robot manipulator is a mechanical structure which

consists of a series of links connected at joints. When several

joints move simultaneously, the motion and the torque applied at ",

one joint have a dynamic effect on the motion at other joints.

This results in high coupling among the joints and makes the

.S overall system dynamics very complex.

For purposes of dynamic control, one needs a mathematical

model of the manipulator. Such a model can be obtained by deriving

the robot equations of motion using either the Lagrangian or the

Newton-Euler approach [29]. The resulting dynamic equations for a

n-joint manipulator are highly nonlinear and coupled. They have

the following form:

S(q)j + H(q,4) + G(q) T (3.1)

%- where q is an (nxl) vector of the actual joint positions (n

joints).

D(q) is an (nxn) inertial forces matrix.

H(q,4) is an (nxl) corriolis and centrifugal force vector.

lG(q) is an (nxl) gravitational force vector.

T is a (nxl) generalized input vector (torque and/or force).

For a six-joint manipulator, computing these equations is a very

.
J S.
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difficult task. The result is hundreds of algebraic terms which

makes the on-line computation of the control torques a major

problem in robot control.

Next, we derive the dynamic equations of a two joint and a

three joint manipulator that will be used Later for purposes of

control.

3.1 Dynamic Equations of a 2-Joint Manipulator

We first consider the two-rotational-joint robot

manipulator of Figure 3.1, where the first link has a length L el

and mass m I, the second link has a length L and mass m Both
2 2'

masses are considered to be centered at the link mid-points. The

load of mass m L is placed at the end of the second link. ie

Using polar coordinates the potential energy can be expressed as:

LI1
12 1..V m Ig -- sin 91 + m 2g(Lsin + -- sin( 1+2)

+ MLg(tIsin 81 + t 2 sin(OI+e2 (3.2)

The kinetic energy, which is the sum of the kinetic energies of

link I (m ), link 2 (m2 ) and the load ML, is:

1 2&2 1 2 2  8 2 • 262)
K mI + + 8 L + m 2 + 0 2

1- 1 2 2 12 2 2 2
"."~+ + m21 2 + a 0 ) Cos a2 t 8-L.O

S2 2 1 2 2 +8 ) cos 6 (33)

, + i m L )'(i + ;2 (3.3)t(O
2 L 2( 1 +26) + UYLl alZ + 12O, co 2

where e e are the joint angles and 6' 6 are the cor-
19 2 1'2

responding angular velocities.

""
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Figure 3.1. Twoe-joint manipulator
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The Lagrangian L K - V is then,

Mm 2
L (1,2 t2-2 '2, mL 2  2L 2 + -)2 1 -T)L 2 (et+e2 )

+ 2 2  6 8
2 )cos e2  (" + m)g 1sin e2 +T mL)'1'2(el + 1 2 Lgl

( m 2

". ,

- + m L)g 2 sin(e l 2 )  (3.4)

The dynamic equations are obtained from the Lagrangian equations:

d %L
S( 3L-) - T. i - 1,2 (3.5) Mae. ae. .'.

where T. is the torque (or force) applied at each joint. The

final dynamic equations are: ,.

m2+(m2 + 2 (2' = l , .. L 2 , in"

T2 [(+ -m 2  )L I M L)t 2 2( 2 + M L)Lt 2cos 
8
2 ]16

m 2 2 m2 +
[( + ML) 2 + 2= mL)lt2cos 82]62

.. %
" ! '2  1l

- + mL)tXL2sin a2 (281+ 2)92 + ( + m 2 M L)RLIcosa 1

+ m 2 + mL)gt 2cos(e +82) (3.6)

-~ ~ L (i LJ 2  1 m9 2  os2l
T' (m2 +m 2 .m2+Co

2" m2 2 m '1 2

+ ( 2=+ mL)t 2  * m~ 2m+ + m t 2 sin 8
+ iL) 242  2 L1'2'1 2

+ ( m'-- + iL)gt 2 cos( 1 +8 2 ). (3.7)

2 " ,.-." . .,". , ,,

. C. ,,,,r,,.,. ,,,.. ,¢,.',r.,-% .qre> ::," ,', -€ L4 € . ,'? . 4 < 4 < €
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3.2 Dynamic Equations of a 3-Joint Manipulator.

Consider now the three ioint manipulator of Figure 3.2. It 1%

ell consists of one rotational joint which rotates in the (x-y) plane

(joint variable *). It also has two prismatic joints. One allows

the hand to extend in the (x-y) plane (joint variable r) while the

other lets the hand translate along the z-axis (joint variable z).

The arm has a length t and a mass mR. The load with a mass UL

is placed at the end of the arm as shown in Figure 3.2. We suppose

that r > Z/2.

In the cylindrical coordinates the potential energy is:

V -mgr sin * + (r - )m~gsin * (3.8)

The kinetic energy is:

1 22 2 1 r 2 + $ 2
K - Yi2 + (r*) + iR[2 + (... j2

. 2

2 L -r)[(2 + (1~ 2 ) r +2] (3.9)

The lagrangian L is then,

T m~tT [{ ) ) f T- ~ g in -
2 RL2t r* m

- (r - -I)m~g sin * . (3.10)

If we denote by FR the force applied by the actuator C.

along the r direction, by F the force applied by the second
Lz

V .. . . . . . . . ~. .~'.~. . .. "-.



prismatic joint along the z-axis, and by T the torque applied by

the rotational joint; we obtain the following dynamic eauations:

FR (mL + I. Midi - (niL + . mRr 2 L *2
; -" t .) [ %4 R r & + m , g~ 2:r." R 4 R% g g %

+ (ML + mR)g sin * (3.11)

T 2(mL + mR)rfI * () r R

MRL(3r)* + (m + m )g r cos 4 - g cos
'4' -R L R ~ 2o , 3,2

F z m. l, m R ) ' (3 .13 )
Z 1.

am
*1

d

*1



CHAPTER IV

ROBOT CONTROLLER DESIGN

In this chapter we present two different control concepts.

In section 4.1 we present an independent joint control method, the

'computed torque' technique.

In section 4.2 we propose a nonlinear control approach

based on feedback linearization. A control algorithm with explicit

nonlinear feedback is derived. We also illustrate by two design
°a,

examples with computer simulations to evaluate the performance of

0the proposed control method.

01

4.1 Controller Design with the 'Computed Torque' Technique

Most of the control approaches found in today's commercial

robots use the method of independent joint control ([4J,[51). An

illustration of these methods is the 'computed torque' technique

([301,[311), also called the 'inverse problem' technique

([321,[331). It is basically a linear proportional and derivative

control law.

As seen in chapter III, the actual equations of motion of a

robot are in the form:

D(q)" + H(q,4) + G(q) T (4.1)

r

.. . . ...... . . . .............-...-...-......... . . - *° S o
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The principle of the 'computed torque' technique is as

follows. Let D C(a), Hc(q,4) and G (q) be the computed counter-

parts of the actual D(q), H(q,4) and G(q). Let the control r

(force or torque) be:

T - Dc(q)[ d + K p(q d-q) + K (vd- )] + Hc (q,4) + Gc (q) (4.2)

where q and are respectively the desired joint

position, velocity and acceleration vectors.

K and K are constant scalar feedback gains (PD action).
p v

If we assume that the computed Dro H c and G are equal to their

actual counterparts, i.e.:

'.p. -

". D (q) - D(q)
c

H tc (q,4) - H(q,4) (4.3) ;

G (q) -G(q)

then from (4.1) and (4.2) we obtain:

(d-q) + K (qd-q) + KU(I-l) 0 (4.4)

If we let eq q be the joint position error, then (4.4)

becomes:

+ K + K e a 0. (4.5)

q v q pq

The control problem is then reduced to assigning poles with

negative real parts for (4.5) such that the error e approachesq .5

zero asymptotically. One should note that the convergence relies

on the validity of (4.3).

5% %

55.
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From (4.5), the component e of the error vector e qqiq

has the following characteristic equation:

2 42 2
s 2 KS + K s 2 . n + w2 0 (4.6)i n

where

wn = Vi is the natural frequency.
n p

K
- ....= v is the damping ratio.2V-

P

In almost any robot application overshoot is to be avoided. In

th'- case, the fastest response with no overshoot is the critically

damped one corresponding to ; equals to one. Hence,

K - 2/•"v p

and the error time response is:

-r-t - '-t
e (t) - c e * c2 t e P (4.7)" q i 2

w where c1 , c2  are constants.

From (4.7) one can say that the larger the values of the

feedback gains K and K,, the faster the asymptotic convergence
p

of e (t)q.

As an example we will use this technique to control the

three joint manipulator of figure 3.2.

oa'

D%

%. .

a..m
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Example 4.1.1. Three ioint manipulator:

From the dynamic equations (3.11), (3.13) and the control

law as given by (4.2), the actual control torque T and control

forces FR) Fz  are:

pm R.. . 3 *r 2 "i:
F (F-)(rd + Kp(rd-r) + K (d-r)) - (mL mq r
R (mL + d P

T m R4i + (m L L mR)g sin *. (4.8)

T ((mL 4 -m) r mRt(L-3r) d + Kp(*d-9) 4 K( *))

2(mL+ .1 M%)ri* - + gr Cos 4

- L 4( (l,-mR
"U'. .. co

I,-

...- m -g Cos (4.9) -

' where q - (r,#,z)t and 4 are the actual joint position andm~4 -

velocity vectors, q (r d* dsz ) and 4 d are the desired joint

position and velocity vectors, idoid' d are the desired accelera-

tions. K., K are constant feedback gains.
v

A computer simulation was then conducted. In the first

part of the simulation, w simulated the motion of the end effector

from one initial path point to the next desired path point, or

equivalently through the inverse kinematics, from an initial joint

state to a desired one.

": .. p. :

-°"
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Initial joint state (r - I m, * " 0 rd, z - -1 m), and

desired one (r - 0.5 m, * - -0.6 rd, z - -0.2 m) were arbitrarily

chosen. For the entire simulation the feedback gains Kp and Kv

were chosen to maintain a critically damped response, i.e.

K -2V T.
v p

Figure 4.1, 4.2 and table 4.1 show the simulation results

for K 5000. A steady state error is present, due to the fact

that (4.5) represents a type 0 system. High torques are also

J. required for the motion.

Table 4.2 gives the steady state errors and the maximum

value of force Fz  (F showed higher values than T and F R ) as a

function of the feedback gain K.

One notes that as KP increases, the steady state errors

and the convergence time decrease. However, the torque values at

the beginning of the motion increase, which means more powerful .

actuators are needed. Indeed, the position error e and its
q

derivative e are maxim l at the beginning of the motion. The

inertial term is the dominant part in the expressions of the

torques given by (4.2). This implies that high values of KP and

K may result in high torques until e and q are small enoughv q q

to cancel out the effect of such Kp and K . Hence, one should

compromise between accurac; speed and maximum allowable torques.

One way to maintain good accuracy, fast response and

smaller torques is with time varying feedback gains. One can first

put a bound on the maximum permissible torques and starts with

small values of K. and K As the errors e and i are

%N
* 6q
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Table 4.1. Simulation of j 'oint motions from 1 ,-)to
(0.5,-0.6,-11.2) with K. . 5000.

THREE JOINT ROBOT MANIPULATCR-COMPUTED TORQUE 7ECHNIOUE
CONSTANT FEEDBACK GAINS,

TIME 1 PHI z

00000000

.20000 .51419 - 85R1 - 18582

.30000 .51418 - 58582 -18582

.40000 .51418 - 58582 -19582

.50000 .51418 - .58582 -18582

.60000 .51418 -,58582 -. 18582.

Table 4.2. Steady state position error, meaximum. force F zand

convergence time, as a function of the gain K

Feedback (F )max Convergence
gain Ar a#A time

K(m) Card) (im) (N) (s)%
P

400 51 51 51 4762 0.72.

1000 32 32 32 11646 ().44

2000 22 22 22 23029 0).33

5000 14 14 14 56993 0.22
K-

10000 10 10 10 113403
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Figure 4.1. 'Computed torque' technique. Simulation of joint
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decreasing, Kp and Kv are increased as long as the torque

limits are not exceeded.

Using this technique and increasing Kp, Kv  in a piecewise

fashion (341, the previous hand motion of the three joint

manipulator was again simulated. The maximum allowable torque

(force) was set to be 5000 Nm (N). Simulation results are given in

table 4.3 and figures 4.3 - 4.5. The results show a steady state
-J

error of 4mm for joint variables r, z and 4 mrd for * The -1

convergence time of the motion is 0.15 seconds. Indeed, this time

varying technique gives an appreciabl4 improvement in both steady If.

state error and maximum torque requirements, compared to when we

use constant feedbacks Kp and K
v

The second part of the simulation consisted in simulating

the end effector motion of the three joint manipulator along an

arbitrary preplanned path in joint space, which is given in table

4.4. The time varying technique, which provides a better

performance, was used and the maximum allowable torque (force) was

set to 5000 Nn (N). The required time of motion was set to 1.95

seconds. Simulation results, given by table 4.5, show a relatively

high maximum error position and a final steady state error.

To summarize, one can say that with the computed torque

technique adequate path tracking can be achieved only at the

expense of high power actuators. Even though, the time varying

technique lowers the torque requirements, relatively high torques

are still needed for acceptable accuracy. This is mainly due to ,.5

p,

the fact that one tries to stabilize a nonlinear system with

IL'
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Table 4. 3. Simulation of joint motions from (1,0,-I) to =(0.5,-0.6,-0.2) with time varying feedback gains.

It

-- ,..

.-pp

.. |

THREE JOINT ROBOT MANIPULATOR-COMPUTED TORQUE TECHNIQUETIME VARYING FEEDBACK GAINS. ,..

TIME R PHI Z

0 1.000000 0 -1000000
.050000 .853972 -. 177880 - 731955

.100000 .564022 -. 525944 -. 266421

.150000 504024 -. 595975 -. 195992

.200000 .504014 - 595986 -. 195985

.250000 .504015 -.595385 - 195985

.300000 .504015 -. 595985 - 195985

A.,

-C.

A,.
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~Figure 4.3. 'Computed torque' technique with time varying.

feedback gains. Simulation of joint motions from ,

I (1,0,-1) to (0.5,-0.6,-o.2).0--
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Table 4.4. Preplanned path in joint space ,.

JOINT POSITIONS

r (m) 0.4 1 0.5 1.2 1.5 2

I (rd) 0 0.5 -0.1 -0.9 -1.2 -1.8

z (m) -1 -0.3 0.4 0.4 0.8 1.4 4..

.. o,

Table 4.5. 'Computed torque' technique with time varying feedback
gains. Path tracking simulation.

Maximum Final position
tracking error

Joint error

Ar (m) 11 4

-A (mrd) 10 4 7"

AZ (Cm) 11 4

i-d ""
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basically a linear PD feedback law. In practice equations (3.2),

on which the convergence process relies, are only approximately

satisfied. Hence, it is expected that the tracking accuracy is

worse than the one obtained by simulation.

We will coment more on this technique when comparing it to

the feedback linearization which will be presented in the next

m*0

% section.

4.2 Feedback Linearization

The control of a n-joint robot manipulator is in fact the

problem of controlling a dynamic system described by a set of n

nonlinear differential equations. Due to the difficulty of the

problem, one may attempt to linearize the system and design a

linear control law.

A comonly used method to linearize a nonlinear system is

the first order linearization (Taylor expansion). By this method;

Golla, Gang and Hughes [51 linearized the dynamic equations and

qdesigned a linear state feedback controller. However as

Vukobratovic [351 shows, when performance requirements (speed,

accuracy, etc.) are raised, this approach does not lead to

satisfactory results, mainly because at high speeds, higher order

terms cannot be neglected.

A different approach to accomplish the linearization is via

nonlinear feedbacks. This idea has been used in the past years and

was the start of what has been termed 'geometric control theory'

""9 Precisely, given a multi-input nonlinear system of the form:

% %!
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where xO,X ... Xm  are smooth vector fields on Rn (or a

n-manifold M ) and ul,...u are the controls. The question now

is, under what conditions can one find a coordinate transformation

and nonlinear feedbacks u.(x) (i - 1,...,m) such that the
1. '

nonlinear system is linearizable. Lately, this question has been

answered and a feedback Linearization theorem with necessary and

sufficient conditions has been proved [251.

-,. In this section we will present this feedback linearization

theorem and use it to derive a control algorithm with explicit

feedbacks to control an n-joint robot manipulator.

j 4.2.1 Theoretical background

Lie algebra of vector fields [361 is extensively used in

geometric control theory. In this section we give some definitions

and theorem that will be used in later sections. We define the

Kronecker indices and introduce the concept of nonlinear

controllability.

Definition 4.2.1

The Lie product of two smooth vector fields X(x) and

Y(x) is defined as:

[X,Y](x) - X (X)Y(x) - Y x(X)X(x)

where X and Y are the Jacobians of X and Y.
x x

V

5I"

°,



Definition 4.2.2

I Let f be a smooth real valued function of a manifold Mn

onto R

The Lie operator L is defined as:

(Lfx) - (Xf)(x) <X(x),df(x)> - ai(x) af(x)
xax. '

where X(x) - (a (x),... ,a(x)) ."

for notational convenience, we will use the following notations:

(adX,Y) - [X,YI, ((ad X,Y) - Y)

(ad2 XY) - [X,{XY)l - [X,(adX,Y)] 1l

(adkxY) - [X,(adklXY)I ]
'S'

Definition 4.2.3

Let f be a smooth real valued function of a manifold Mn .

onto R

In terms of operator notion, the Lie product [x,y] can also

be defined as:

[X,Y]f - Y(x)(Xf)(x) - X(x)(Yf)(x)

~1* .

Definition 4.2.4
ILI

Let G be a finite dimensional vector space. If the Lie

product [X,Y] defined on G (X,YE G) satisfies
5-.

i

1. [ax I + X2, Y] - [QXl 1y] + [x2 ,Y] - ,XisYJ +X 2, YI

*[Q[x1,yI - [x 2  ] j or a real.

2. [X,YI - -[Y,X] (anticommutative)

3. ([x,YI.zJ + ([YZ],X+ LZx], 0 (Jacobi Identity)

1..

6~°
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Then G is said to be a Lie algebra. .'

Definition 4.2.5

Given two Lie algebras G1 and G., Given also a one-to-

one mapping L from C onto GI) Then L is said to be a Lie _

algebra isomorphism if it satisfies:

1. For any real c,, c 2  then

(c 1X 2 = CI(X I ) + c 2 (X2  C I  + C2 2

"-. 2. E[X 1 ,X2] - [L(X ) , t(X 2 ) =

where XI, K2  CG and Y Y2
'I2 I1 2~ 2

If L is also differentiable, it is said to be a Lie algebra

diffeomorphism.

Theorem 4.2.1

If E is a Lie algebra diffeomorphism from a Lie algebra

G onto a Lie algebra G2 then the Jacobian E. of L is also "

a Lie algebra diffeomorphism from G 1 onto G2  with L tX ,Y'

Definition 4.2.6: Involutiveness

Let C - {x 1... kXI be a set of smooth vector fields on

Rn  (or 4n), with X (P),...,k (P) linearly independent for some ,

point P . Then the set C is said to be involutive, if for any

Xi , X-1 4 C there exist smooth, real valued functions
k,

such that the Lie product [Xt,xJ](x) - % iJ(x)Xm(x) x in the
M- 1 m

neighborhood of P, i.e. [X,Y](x) E span of C -

Ic

S".r',p .-.



Definition 4.2.7. Kronecker indices

The Kronecker indices for a matrix pair (A,B) are defined

as follows:vi

Let R . B, AB, . .,A B]

11
Let LM dim d im i

and L. = dim R I dim R

.5For an integer j, the Kronecker index K. equals the total numnber

of L.i which are greater than or equal to j, i.e.

Example 4.2.1

0 0 1 0 0 0 1 0

0 0 01 0 0 0 1
Let A- ,H ence A:

0 0 00 1 0 0 0

41

000 01 00 O I O o

CL adim B - 2

2 2

L. - dim R -dim R 4- 2 -2
2

The Kronecker indices are:

K- L# t<L. > l} 2.

K 2 {# Lit.)>21 2.

K.O0 for i)>3.

%.

Wa



Definition 4.2.8. Local controllability of a nonlinear system

Given the multi-input nonlinear system of the form

m
i - X0 (x) u.(x)xC (x) (4.1)

where X 0,X,...,x m  are smooth vector fields on M n. Let P be

0
the equilibrium point (corresponding to u. = 0) so X (p) = 0 .

Then system (4.1) is said to be locally controllable about P, if

for any time t > 0 there exists a control u such that any point

in a full neighborhood R of P can be reached in time t by

solutions initiating from P.

Theorem 4.2.2

A first order, sufficient test for local controllability of

system (4.1) along its equilibrium point P is:

dim spani(ad X0X )(P): i j = 0,I .... n

For a single input nonlinear system, this condition reduces v

to:

dim span{(ad'X 0 ,x'), j - 0,..., n-11 being linearly independent.

The proof can be found in [371.

4.2.2 Feedback linearization - single input case

In this section we define precisely the concept of feedback

linearization and state the single input feedback linearization

theorem.

Given the single input nonlinear system of the form:

0
x - (x) + u(x)X (x) (4.2)

% %
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where xx are smooth vector fields on Rn (or Mn), u is the

control and P is the point along which we want to linearize. -,J

Given also the linear time invariant canonical form:

0 1 0 0 ... 0 0 %

0 0 1 0 ...0 

,=Ay +b , A, b (4.3)

0 ... 0 1 0

L0 ... 0 _j ,-

where 4 is the control.

0 1 nLet V (y) - Ay and V (y) b , be vector fields on Rn , i.e.:

= (4.4)

The feedback linearization problem can be expressed as follows:

When can one choose a coordinate transformation

y = ,(x) (4.5)

where * is a local diffeomorphism (differentiable isomorphism),

with *(P) - 0 , *,(P) nonsingular and a nonlinear feedback

control

u(x) v(x) + W(x)u (4.6)

where u is a free new control, such that (4.5) and (4.6)

transform the nonlinear system (4.2) into the linear system (4.3).

Specifically, with feedback alone, system (4.2) transforms to:

" - x 0 (x) (v(x) + (x)u)X (x)

i.e., W 0 (x) + pWt(x) (4.7)

~.11
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where W 0 (x) X0 (x) + v(x) X x) and W (x) =(x)X (x) are

smooth vector fields.

% While with both coordinate change and feedback, we have:

(X), , is the Jacobian of 0

**(x)(X (x) + (v(x) + ,(x)u)X (x))

i.e.: Y (y ) + 1Y (y) (4.8)

* where Y 0(y) = 0.(x)(X 0(x) + v(x)X (x)) = *(x)W 0(x) which we

0
want to be V (Y)

I
y(y) =*(x)(w(x)X (x)) *(x)W (x)

which we want to be V (y).

0 1 0 1
We note that V and V generate a Lie algebra L(V ,V

Suppose that system (4.8) is the linear canonical form (4.3).

Since * is a diffeomorphism, then by theorem (4.1.1), 0* is a

Lie algebra diffeomorphism too, i.e. *. cannot change the

structure of a Lie Algebra. Thus the Lie algebra L(W0 ,W

generated by W0  and W must be isomorphic to the Lie algebra

0 1
L(V ,V ). In other terms, it is necessary to be able to choose .

v(x) and w(x) to have such W0  and W1.

Next we introduce the concept of feedback equivalence of

two systems.

Definition (4.2.1)
.[ .

Two systems are said to be feedback equivalent if one can

be transformed into the other via a local coordinatp change and a

feedback.
? % !



Theorem 4.2.3

The n-dimensional, linear time invariant systems k Ax +

Bu and j = Cy + Du where A,C are nxn and B,D are nxm

matrices; are feedback equivalent if and only if the pairs (A,B)

PM and (C,D) have the same Kronecker indices.

Furthermore if (A,B) has Kronecker indices K, I K ) ...2

K , then it is feedback equivalent to the following canonical

form, Ac z + B , U input vector,

and Ac is the Jordan block diagonal matrix given by

0 1 0 ... 0 "C
Ac= diag (AP ....A) , A. =

0... 0

A. being a (K.xK.) matrix with ones in the superdiagonal and
i I m

zeros elsewhere. B c  (b ,...,b
m ) , bi - [0 0 1 0 ... Oj

where b is a (nxl) vector with I in the ( Z K.) component and
j=1

zeros elsewhere.

The proof can be found in (381.

The following theorem for the single input linearization

problem gives necessary and sufficient conditions for the existence

of the diffeomorphism * and the feedback control u . It also

gives the explicit form of * and u

I.
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Theorem 4.2.4 - Single input feedback linearization theorem

P Given the single input nonlinear system:

X = x) + u(x)xl(x) (4.9)

0 1 n
where X0 , X are smooth vector fields on Mn , u is the control

and P is the point about which the linearization is desired.

Let = Ay + bp (4.10)

0 1 0 0 ... 0- 0"

0 00 1 0 ... 0 0

with A= ,

0 1 0

L-0 ... 0 1 .%

be a canonical linear time invariant system with control -"
5.

Then three necessary and sufficient conditions for system

(4.9) to be feedback equivalent to the canonical form (4.10) are: r

i) there exist a real a such that:

X 0O(P) + aIX (P) = 0.
1 0 1 n-l 0 1

ii) X (P) , (adX ,X )(P),. ..,(ad X X )(P) are linearly

independent (sufficient local controllability test,

theorem 4.2.2).
•~~ 0- 1 X' 0, an-2 20 1 }

iii) the set Ix , (adX ), ,(ad X )I is

involutive.

Furthermore, when the above three conditions are satisfied and

since the involutive condition 3 implies that there exist a smooth

Rnfunction h: R + R such that h(P) 0 , (dh)(P) $ 0 and

5'

%5
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(ad x 0 , X 1 )h - <(adJX0 ,X1 ), dh> = 0 for j = 0,1,... ,n-2. Then the

diffeomorphic coordinate change y W(x) with O(P) 0 and

*(P) non-singular is given by:

yj = (LJ 0h)(x) j j = 1,... ,n

and the feedback u(x) - v(x) + u(x)u , where u is a new free

4control (of (4.10)) is given by:

n
(L 0 h)(x)

XX

VW n-I

v~ =-(Lx IL 0 h) (x)

(L Ln h)(x)
X X

Proof.

P The proof of this theorem is constructive, i.e. in the

process of proving the three necessary and sufficient conditions,

the coordinate transform and the feedback u are constructed.

Necessary part

i) We have V0 (y) - Ay , so V0 (0) 0 Since 0* is a

Lie algebra diffeomorphism, it is necessary that W0 (p) = X0 (P)

v(P)XI (P) be zero. Hence it is necessary that there exist a real

a such that X (p) + ax I(P) - 0

ii1ent h 0, 1 n-I 0, 1
ii) We note that V (0), (adV ,V )(0),... ,(ad V ,V )(0)

are linearly independent (i.e., the linear controllability

condition is satisfied). Again, since 0* is a Lie algebra

I n1 0 1
isomorphism, it is necessary that W (P),... ,(adn- W ,W )(P) are

linearly independent since L(W 0,W ) must be isomorphic to

-a:-
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L(V0 ,V ). But, (adW0,W ) [X0 + vX', wX1] - [X0 ,WX1 ] + [vX1,wx11

1 0 1
- w[xO,x 1 ] (X0 )X1  v(XIK)x' - w(X~v)X' , and since W1 = KX,

then WI(p), [W0 ,wI](P) are independent if and only if Xl(P),

0 1[x ,Xl](P) are independent.

2 0 1
Continuing with (ad W ,W ) etc., we obtain the second

necessary condition:

10 1 n-1 0 1
X (P), (adX ,X )(P),...,(ad x0 ,x )(P)

are linearly independent. This condition is sufficient for system

(4.9) to be locally controllable at P. However we can have system

(4.9) locally controllable at P but not have the second condition

of the theorem satisfied. In this case we cannot transform via

feedback and a coordinate change to the linear system (4.10).

(iii) At this point, one should note that for the linear

system (4.10), (adn ,v V 0 . Also [(adJv0,V ), (ad'V0,V )] = 0

for all j, Z . Again, we must require this for the similar
0% 1

products of W0 , W. Indeed, computing in the linear system shows

{V , (adV 0,V ) , . . . , (adn - 2 V0 , V)} is an involutive set. Thus again

L(0,1 L(01V ''

since the Lie algebras L(W 0W ), L(V 0V ) are isomorphic, we

require that {W1 ,...,(adn 2 W0 ,Wl)} be involutive. But, (adW 0 ,W)

- c[xO,x'] + (XOw)X 1 + v(X'w)X I - w(Xlv)X I . So as for the second

necessary condition, we conclude that it is necessary that:

i-20 1
{x,...,(ad-x ,x )} is involutive.

%,V ,

" .%

UI
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Sufficient part.

We want to show that when the three conditions are

satisfied, there exist a diffeomorphism 0 and a feedback u such '4
that systems (4.9) and (4.10) are feedback equivalent. We will Ob

also give the explicit form of 0 and u.

By necessary condition 1, there is an a such that X0 (P)

+ aX (P) = 0 . One can rewrite system (4.9) as: i = (X0 (x) +

ax1 (x)) + (u(x)-C)X (x) , i.e. i - X (x) + U(x)x (x) , where

-0 0 1
X (x) X (x) + ax (x) vanishes at P and u(x) (u(x)-a) is a

new control. Thus we can and will assume that X (P) = 0

The involutive necessary condition 3 implies there exists a

smooth function h: R R, with (dh)(x) X 0, such that:

(adiX 0 ,X )h 0 j = 0,....,n-2 (4.11)

We will also choose h so:

h(P) = 0 , (dh)(P) s 0

Now we let the coordinate change 0 be:

yj " (LJ 0h)(x) j = 1,... ,n (4.12)

with y y,... yn (x)

We claim that the map 0 satisfies O(P) 0 and 0,(P)

is non-singular, i.e. * is a local diffeomorphism.

.41
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a) Indeed we have already chosen h such that h(P) = 0 i.e., I
(P) 0  Also, y2(P) - (L h)(P) = <X(p),dh(P)> =

0j-

" since XO(p) -M 0 . Similarly yj(P) = (LJ-h)(P) - 0 ,

j - 2....,n ; because X0(P) = 0 . Hence W( ) =  0

e.. b) We wish to show that 0,(P) is non-singular, i.e. dh(P),

(dL h)(P),... ,(dLno h)(P) are linearly independent.

We already have dh(P) * 0 Suppose (dh)(P) and

% (dL h)(P) are dependent, i.e. a * 0 such that] 0
(dL h)(P) - a(dh)(P)

x 0
Then, (adX0 ,xl)h(P) [X0 ,X'I]h(P) = x1 (x0 h)(P) - X0 (XIh)(P)

" I(X 0 h)(P) - <X ,dL 0 (P) = <X ,adh>(P) - a(X h)(P) which means

1 01
that X (P) and (adX ,X )(P) are dependent. Inductively if

(dLJ0h)(P) is a linear combination of (dL oh)(P) i - 0,...,j-1
0** 00 Kp

we conclude that (ad jl X X)(P) is a linear combination of

(adiX°,X1 )(P) 0 < i < j , which contradicts the independence of

X (P),... ,(adn- x, X )(P) of necessary condition 2.

"e Hence *,(P) is non-singular and * is a local

diffeomorphism given by (4.12). Next, we construct the feedback

U .

To shorten notation, let

V(x) = Ku(x) + u(x)XK(x)

."



First we wish to show that

(L vh)(x) = (L]0h)(x) j ( 4 .,n-1 (. 13)

and

L .Lih- 0 j 1,...,n-2 (4.14)

For j -I

• L h -(X 0 + uxlI)h X X0h L Lxh

100xxx

For j 220 1 0
L h LV. h -(X + ux )h ' X h L h lIL0h

h(adxL, X)h X (X h) - X0(Xh) X(XL0 h) L L Lx0h 0

" Hence

.5 X

01 2 011

(adh - L Lh

xx

Continuing in this fashion and as long as (ad x ,X )h= 0,

which is valid for 1 < j < n-i we have

h j n-

VL h -L(h 1 n

'' ic I () (an-ix00

Since X (P),... ,( X ,Xl)(P) are independent and X0(p) - 0

it follows that X (P) # 0. We have (adX 0,X I)h XI(x 0h) .

0 1 1 0
x (X h) - X (X h) - L Lh 0 . Inductively, from

0  
.-

(ad XX )h - 0 for j - 1,..., n-2 we have

..

V°l
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L 1 0  ",. ...

x x

The feedback u is obtained as follows. Differentiating the

coordinate transformation (4.12) we have

(dh)(x).i - <X0 + uX ,dh> = Lvh = t 0 hY2

X4
V x 0hmL h2

Y2 L~vh L 0-h" Y3 '

,'. ...

(4.15)
.. '.a

n-I n-l
n L h L 0 h y

.%#"

nI0 1 n-I
n (dL 0 h)(x)' <X + uX dLn h>

(L n h)(x) +u(x)(L Ln-I h)(x)
x x x

But u(x) - v(x) + w(x)u . Since we want system (4.15) to be the

linear canonical form (4.10), we have

(L nh)(x) + v(x)(L L1. h)x ~x( - h)(x)u 4-,

' One can then choose

(L Oh) (x)
V(X) -

(L L h)(x)

I
(L IL0h) Cx)

x x

V 
.4.
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to make the last equation become n' = , and system (4.15) is

the linear system (4.10).

16W

Remark.

In many applications the linearization is to be done

around the equilibrium point corresponding to zero controls. In S
0this case P is such that X (P) - 0 and the first condition

of the theorem becomes trivial (a = 0).

4.2.3 Feedback equivalence - multi-input case

In this part we give the multi-input feedback lineariza-

tion theorem which is an extension of the single input one. We

will show that when the linearization works, the nonlinear system

is feedback equivalent to a canonical linear system determined

by the Kronecker indices of the nonlinear system.

Theorem 4.2.5. Multi-input feedback linearization theorem

Consider the multi-input nonlinear system of the form:

7

0 :
= X (x) + ui(x)X (x) (4.16)

Let P be the point around which we wish to linearize.

The necessary and sufficient conditions for system (4.16),

with Kronecker indices K1 > K2 > ... > K., to be feedback equi- ."

valent to the linear time invariant canonical form A = A z + B Cu

as given by theorem (4.2.3) are:

i-There exist reals a, 1 ... a so

,-.'.
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0x (P) * L. X (P) = 0

K -IO 'K2-X t 2}

2- Let C(x) X .  ( a d  , ),x, ad ,

.... Xm , ... ,(ad 'a X0, Xmi . Then dim C(P) " n (local='

controllability test).

3 - For each i = 1,... ,m let

K -2 K-2xIl..adi 01 -' °0
C. {X,...,(ad X x ),X2,....,(ad ,X ) .. X

K -2.. ,(ad x ,xm
., "

Then C. must be involutive and Span C.(x)

Span (C. n C)(x) i.e., C.(x) C C(x) for all i.

The proof of this theorem is similar to the one given for

the single input case and can be found in [25].

Remark:

As for the single input theorem when the point of interest v.

P is the equilibrium point (in most applications it is) such that

xO(P) 0, the first condition of the theorem becomes trivial

(a. = 0, for all i).

In the single input case the construction of the diffeo-

morphism * and the feedback control u from the real valued

function h was proved. But for the multi-input case the con- W

struction work has not been proved, we rather guess the functions

h.(x) as it will be shown for the n-joint robot manipulator.

1.

*N• ° ' .|
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A special case of interest is when the Kronecker indices

are all less or equal to two. In this case the third condition

is always true. Indeed, C I  X ,X ,...,X': which is an

involutive set and Ci C C for all i.

4.2.4 Application to robotics

In this section we will design a nonlinear controller ror

robot manipulators by employing the feedback linearization

technique. We will first show that the feedback linearization

theorem is applicable to linearize the dynamic equations of a

n-joint robot manipulator. Then, we will derive a aeneral

expression of the feedback controls. We will illustrate this

design procedure by two examples, a two joint and three joint

manipulator. Computer simulations for performance evaluation are

also given.

In chapter III we have seen that the dynamic equations

of a n-joint manipulator, as iven by (3. 1), have the following

form.

D(q)q + H(q,4) + G(q) (4.I7

where q (ql, ... ,qn) is a vector of the actual joint positions.

If we let

q x i I.... ,n

then, the state space representation of (4.17) can be written as

N. ~

P%:

d';



4 --
"' xl x2  "0" 0 O

+u2 f l (x ) I0)

x3 x3 0 00

f (x) 0I

: : + u(x) + 0 u'(x) + .. U.(×) + ..-

f(x) 0 0 0

ii
n-1 i 2n

U

Jhr u.(x) is a li o

2..o

form:-°

X(X+ U (X)(
n "

0 ,,

where u (x) contains a nonlinear combination of some torques 7

' We will assume that f.i(x) is a smooth real function, for all i."

System (4.18) is then a multi-input nonlinear system of the

.-. form :.-

x- (X) + X X)u i (x )

%% .
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0where X X I1,. ,n are smooth vector fields as given by

Let P be the equilibrium point of (4.18), corresponding -

to u. 0, i.e.

x0 (P 0

Next we show that this state representation leads to

Kronecker indices all less than or equal to 2.

i) Kroriecker indices:

0 0-
IP

I(P),...,.n J

span [= span 0 ..-

P...P
0

t I dim R n

2 11. 0 -)P,.,np 0, ... n aesocnetrfed sgvnb

R span [X (P),(adX0 *( 0aX X (

0 1 0 0 ... 0

3f af a
ax 1 ax 2-2n

1 2

0 0 0 1 0 .. 0
X 0 (x)

a f af af
2 2 2

ax I ax 2 X2n

o 0 ... 0 1

"0 o - -'.'-~

afaf af
sn x ... =s n

L 1 2 2nJ-

.4.

&l
=

d~ R
I

,n .A A A '_ % %.A...A~~



2

1 0

(adX 0 X~ 1P (X). 0 (P) ax
2

0 0

d..f

n
(P)

L J La2

0

Sfi

0 -ax(P)
-4

0ada0 
'1

(ax,x,)(p) =X (X). 1 - (P)x 3x,

* 0

0 nP
Lx4



,..

v0 R

"ff-P
Dx 2

On 0

(adX ,X )() (X). _ (P)
2n

af
- (p)

.J.. a 2 n
then,

.'f-~010 0 0 0 f

~1 ( )0 (P) "- (P)
ax 2 ax4x

r 0 0 0 1 0

2' Df 2 " af 2 3 f -
Rz  span : (P) , z {( ) ( .

ax "

0

0 0 0 1

f' af af af .
0P 0 ax2Pax 2  a x4 a

Hence,

•%"

'.

- .5 '" " " " '* " , l ,i,' " " i , ,a i m ,wl
%

" . ' , " .ll m , ~ l l d l l i ii ', ;l ~ " " " " " % ' a , k .. , L " i " " , . . . w ' . , - % . ' " " ' ' ' " '" ... ' ' ' . " " ' ' ' ' " " " " ' "
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dim R2 = 2n (det = -1)

2= dim R2 dim R= n-

22

L. = 0 for i > 3

The Kronecker indices are then:

-.h

--.,
K = 4 (I. . .. > n} = 2 "

K = f, £ L. Z. 2} 1' 2
2 I

K Z# . Z. > n =2n t L

K. =0 for i > n

Hence all Kronecker indices are all Less than or equal to

2. Next we check the three necessary and sufficient conditions of

the feedback linearization theorem.

Since we are interested in linearizing around the

0
equilibrium point P, with X (P) = 0, the first condition is

trivial.

Also, due to the fact that all Kronecker indices are less

than or equal to 2, the third condition is immediate.

For the second condition let

X1 0 1 n O nC(x) { ,(adX X ),... ,X (adX ,xn)}

2dim C(P) = dim R . 2n

Hence, the nonlinear system (4.18) is locally controllable about

P.

r.!

~. -
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Thus, the feedback linearization theorem is applicable and

the nonlinear system (4.18), which is the representation of a robot

manipulator dynamic equations, is feedback equivalent to the

following linear time invariant canonical system:

o 1 0 0... 0 0 0 0

0 0 0 0 1 0

0 0 0 1 ;

= 0 0 0 0 + . 0 .+
1 2 n

0

0 ... 0 0 0 1
L L J L J L.J-

which consists of n uncoupled second order subsystems of the

form:

l Y2"""

Y2n-l ' Y2n

Y2n Un

where P.'s are the controls.

WI'-."
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ii) Sy-nthesis of the feedback controls.

As mentioned previously, the construction of the coordinate

change * and the feedback control u is not proved for the

multi-input feedback linearization theorem. Proceeding as for the

single input case, we will 'guess' n real functions hI .h.. hn
sing

Rn * R such that

* h.(P) -0 i = I,... ,n

dh (P),... ,dh (P) are linearly independent.

* CadX,Xi)h 0 " ijm i.e.:
m

L .h. = <X ,dh.> = 0 V i,j
xi

Choosing h, ... Shn to meet these three conditions can be done by

inspecting the vector fields X ,...,x n  as given by (4.18).

One may choose

h I (x)
X I '

h Cx) x

2 3

h. (x) x 2

, .h (x) x
U' n 2n-1

Indeed Or

* U

-°'," 

1

2L,"

p.,.,.'

* ~ ~ * *~ .



* h (0) = ... = h (0) = 0

dh (0) = (1,, .... , dh (0) = (0,0,1,... ,O) t  
... dh (0)

2 2

(0,... ,1,0) t  are linearly independent.

j
* L .h. <X ,dh.> = 0 V i,j

X I5

The coordinate change is chosen as:

1 hI W (x) x I

Y2 hL )(x) <xOdh > <X 0 , (1, 0.. ,o)t> = 2

Y3 = h2(x) = x3 S

Y4 (L 0h2 )(x) - <XO dh 2 > = 4
X

-. (4.20)

Y2i-l h.i(x) X x2 iIwi 2i-I

0
.(Loh)(x) = <X Odh.> x2.

X

Y2n-1 h(x)X

5 0

xx
Y2n = (L 0oh nX) - <xO dh n> 2

Equations (4.20) define the coordinate transform y =(x) = Ix

(I - Identity), with *(0) = 0 and (0)= I

The coordinate transform is then the identity, i.e. no

explicit coordinate change is needed and the linearization will be

accomplished by feedback alone.

-'5
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At this point we note that if we choose the state

representation (4.18) such that f.(x) - 0 for all i, we get

exactly system (4.19) with controls u.'s instead of u.'s.

Since *(x) - Ix , obviously , = * But for the purpose

of showing the feedback synthesis for any diffeomorphism O(x) we

will continue the construcion work as follows:

,'.. Differentiating (4.20) gives: '.

0 1 n
dh 1i <X + u K + + u X dh >

0 .
= <X ,dhI> = Lx 0 h = Y2

dL hl'i = <x  U X + + ux n dL h >
1 01 0'

L h + UL L h + ... UL L h

01 1 nnO

xo xx,
<X 0  

X n  
..

-l - dh " X= + uX + + u , dh.> (4.21)

<X dh.> =L hy
• X 0 " n

.2i dL ii = <x 0 + U X + " +" uX, dL 0> h

. ;'1

L uh+ +UL L h

- dh °k = <X 0  uX * . u Xn dh.k 2n-I n n n '

0
aX ,dh > a L ohn = Y2n

0 1 n
'2n = dLxOhn' " + u X  + + nXn dL 0 hn>

X X
2

L h uL L h ... h u L L h
n n I n n 0n'

.1.X

" . , , e " % . ." w " 
% 

" " " . . . . .. " " -% ... . .. ..ad . .- ' ," . ' e .- . _ . " . . . - " " .. . " • . - ... " . . . - - " .. " . ' .. ' .. -
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4.%

with F

L ohi = <XO,dhI >  
2

,°X I%

A.A.

2 0 0L x xhi = <X dL h I> <X ,(0,i,,. . ,O)> = (x)

1 0 11x XOx

L L hi -<X , dL h > Q (0, 0, , . . . , O ) t > = 0 i 2,...,n

x x

L 0ohi  X 0,dh.> <x 0,(0 .... , 0, . .. o)t> =x i ,

"" 22-i

L <xO dL0oh i> =<X0 (0, ... 0 1', .. o)tl= .(X)

5 24h.. -.. ."

2i

LL h <X ,dL h > - (O...,o,0 ... = 2

x ~0 x 0 1

L' L hi 0

00

Lxh <X0 dh > x
x0 n n 2n

n  n
L L hi.- <Xn ,dL h > " (0,...,O,I)t> ..

i 0Onx x

Hn L L4h1 " 0 m..:

I% S

'A

%:''',,..,:''%'' '%'U :'-.-.,'''%'% 'L '. .L."""-" ,"" .. " .".". -".".-" ", -, ." " , -".-,-- ,-,.','-' ' -,-.,"•",



-- 1

3 Y4

4 '2(x W u 2(x)

4 f (x) * U2 (x)

(4.22)

.2i- Y2i

W(x) + u.(x)
k2i f t

,2n-1 Y2n

kn = fn(x) + un(x)

4. The nonlinear system (4.18) is then feedback

equivalent to system (4.22). Now, we want to make system (4.22) be

the linear canonical form (4.19). This is accomplished by letting

4-..

• )[ %'
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S2i ' f.(x) + u.(x) = II

and the explicit feedbacks u.(x) are given by: %

.J u .(x) - - f.(x) + V . (4 .23) %

where u. is a new free control.

The control problem of the robot manipulator is now reduced

to controlling the n linear canonical and uncoupled subsystems

(4.19). ,.

The objective of the control is to move the robot hand from

one path point to another desired one, or through the inverse

kinematics, from one set of initial joint positions

XlX to the desired joint positions w1,w .. wn

Equivalently, via the coordinate transform (4.20), this is the

problem of moving from the states yl'y3,..Y2n-_ (of canonical

form (4.19)) to desired states z ,z  .N•~~3 .. . ., 2n l *

Subsystems of (4.19) are in this form:

.2i-l = y2i
(4.24)

' " i =k2 i  i =1 ,n.

which is a double integrator, type two system with transfer

function:

# y2i-I ( s )  1
ti. i(s) s2

I S.

% %1



System (4.24) can be stabilized by a conventional state feedback.

Let u . v - K 2itY2ii - K2iy2i i 1....,n wJ

i.e.:

"V +

K2i-l K2i s 
.'

*.1*

iy2i-I ( s )  I

with transfer function " To make thevt(s) s2 +K sK
1. 2i 2i-I

steady state response y2i_[(t) be the desired z2i.l, let

v.(s) = L. z2 1 l*u(s) where u(s) is a step input. Hence,

Y C~ t) Li ; L.

.l imr a l i r s "

-t=  2i-I s+0 s +K2 is+K2i-1 2i-I

Hence Y2.1(in) z2 i 1  i L -L 2.- Therefore the control

j. is:

.K Czi 2i-l(2I1 - I....n (4.25)

- 4!

''

Nf ~~ o]! .



611

We have shown that the original system (4.18) and the

linear canonical form (4.19) are feedback equivalent. This -N

feedback equivalence implies that both systems have the same

dynamic behavior. Again, in most robot applications, overshoot is

to be avoided. To ensure the fastest response with no overshoot,

the feedback gains K2., K2 .1  are chosen for a critically damped

response of the second order subsystems (4.19).

By the coordinate transform (4.20) we can express p. as:

SKi-I (w2i-I xi-I

Thus, the explicit feedbacks u.(x) are:

u.(x) = - f.(x) + K (w x ) K x (4.26)
2i-1 2i-I 2i-I 2i 2i

where f.(x) is given by (4.18)i

K 'K are feedback gains
2i' 2i-1

w 2 i_ is the desired joint position, i 1,... ,n

The actual control torques T. (i - 1,...,n) to be applied by the

actuators are obtained by solving for T., the set of equations

1..u.(x) ; i , . ,

Note that we assume that the states X 1 , ... x 2  (joint

positions and velocities) are all measurable.

Here, we sumarize the procedure we went through to derive

the feedback controls.

• .

B-

%~~ %"-.

e.te-

.................................................................................................
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First, we obtained the state space representation (4.18)w from the dynamic equations of an n-joint robot manipulator. For a

six-joint manipulator, the expressions of u.(x) and f.(x) can "-t

contain hundreds of algebraic terms. In spite of the complexity of

the robot dynamic equations, state representation (4.18) led to

Kronecker indices all less or equal to two. This made the

multi-input feedback linearization theorem readily applicable. The

coordinate transform was found to be the identity and, explicit

nonlinear feedbacks were derived.

Next, we will illustrate this procedure by two examples, a

two and three joint manipulator. For these two examples, a

computer simulation study is conducted to evalute the performance

of the nonlfinear controller. We will also compare with the

'computed torque' technique used in the previous section (4.1).

Example 4.2.2: Two joint manipulator

From the dynamic equations given by (3.6) and (3.7), one

notices that due to the coupling effect, 8i and e are present in1 2

both equations. In order to derive the state space representation

we first solve for O and 6 Then we obtain

a 2(x)b l 2
- 2L 8sin 8 + g cos(81*2))-

1 222
'I a2 (x)_al (x)b 2t2 -.

b 2
2 2 2 (-b L L 2 sin 8 (26 2)6

a2 (x)-a I (x)b2&2  11 2

22V
Aft f"i..
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.4 3

a (x)'T,2-b --T

+ b gz cos + + b gi2cos(-- )) + 2

" 31 a (x)-a1 (x)b 2 2

a1 (X)b Iz .

.2 ( sin + cos( +
2 a 2 (x)-al (x)b 2  1 2 1

a2(x)
+ a ( 2 (bzlZZ2sin 7-( i+6 2 )e 2

a,, (x)T-a (x)T

-, . ( 4 .2 7 )

-*- where
b 2

"b- b2  Co b zcs -- +
31 2 1 2L

(4.28)
b -+m 2 + mL

m2
b + m2 + mL

"~~ 2 +b c s @
4 4.

o* and

a 1  W b4 I b2 Z+ 2b 1 z 1 2  s

(4.29)

2

a 2 (x) b 2 z2+ 1 zIz2Cs2

Let the state variables be:

x-
2 1

(4.30)

--.

-3-
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.5

Hence the state space representation is: %

Ix 2x

= f (x) + u(X)

(4.31)

"3 x4

4 f2(x) + u 2 (x)

where
a W

a2 2.faW b Z Xsin x (4.32)
__._a2 _(x)__a 2(42.32)

1  2 1 1 2 2 3

gl (x) a2 2 _ 2 b g -t cos(xl+x3 )  + 2 2 2a 2 (x-aI (x)b 2 z2a

(-bltltsin x3 (2x2 +x4 )x4 + b3 gtcos x1 + b g'L2cos(x<+x3 )
)

a2 (x)T2-b 2Z2T 
(4.33)

u l(x) = g2(x) +2 2 (4.34)
a 2 (x)-al (x)b2 X2

.-." a I(x)

f2 (x) 2b Z 2 2 sin x3 (4.35)

2  1 (x)b2 2

al(x)

g 2 (x) 2 2 b1 gz2cos(xl+x 3 )
a 2 (x)-a (x)b2 22

a2 (x)
a 2 WbZ sn

S+ a2 (x)a(b 2sin x 3 (2x2+x4 )x4.. 2 1 2x b 2.

- b3 g2.cos x I - blgZ 2cos(x 1+x 3)) (4.36)

.. 5

.. 3
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* u(x)a 2 (x)T1 -a1 (x)T9
u =(x) g2 (x) + a2 W (4.37)

2 a 2 (x)-a (x)b2 2

System (4.31) can be put in this form:
(x (4.38

x 0 (x) + X (x)u 1 (x) + X 2(x)u2(x) (4.38)

where

x 2  0 0

X (x) f(x) x(x) x-(x) (4.39)

x 4  0 0

L f. (x)J L 0

u1 (x), u2 (x) are the controls, and P = 0 is the equilibrium

point of (4.38).

We first check that indeed the Kronecker indices are all

less or equal to 2.

11 2
= dim R = dim (XX -= 2

2 1,12

!R 2  {X ( P ) , (adX0,X i ) ( P )  x2(P), (adX0 X2 ) ( P ) i

a 2 2b 1 Z 2 x 2 si n  x3  0

'2 2

ad(X O x 1 )(P) a 2 -a 1 b 2 2  (P) =

0 0

a12b 1 z 2x2si n  x 3
0

2 2
222•  a22 2

'V-'p



(adX ,X) (P)=

III LOi
Thus, dim R 2 =4

2 1
and 12 - dim R dim R 2

Z. =0 for i > 3

The Kronecker indices are:

K1 .{ Z iZ. > 11 = 2

K2 = {# iJi > 21 = 2
2

K. =0 i > 3

all less than or equal to 2.

For the conditions of the feedback linearization theorem,

0
since X (P) = 0, the first condition is trivial. We showed that

all Kronecker indices are less than or equal to two. This makes

condition 3 always satisfied. For condition 2, let

C {x (adXxx),x 2 (adXOx 2 )

2
then dim C(P) - dim R = 4 . Hence condition 2 is true. Therefore

system (4.38) is feedback equivalent to the canonical form (4.40)

I

A: %

%.--,.°
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1 2

(4.40)

3 4

4 2

1 2
By inspection of the vector fields X ,x; the real functions

h and h2 are chosen to be

h (x) x

(4.41)

h (x) x2 3

such that,

h 1(0) h h2(0) =0

dh1 (0), dh2 (0) linearly independent

L .h. =0 i,j = 1,2

The coordinate transform is then,

Y h(x) x

0t':-Y2 L 0LxhlX OW <XO ' (1'O 'O 'O )t> = = x 2

x

"' Y3 ' x3.59

0 t
" - (L oh2(x) = <xO,(o,O,1,O) =x 4

K SX

which is the identity.

a'i - -. - .- - -.-- ,.-- . -. -
-, -v. S!



The feedback controls u (x), u,(x) as given by (4.26)

are:

u(X) = - fx) + K (Wl-X I ) - K2 x2  (4.42)

u2(x) = - f2 (x) + K3 (w3-x3) - K4x 4  (4.43)

where K l, K,, K3 , K4 are feedback gains and w1, w 3 are the

" desired joint positions.

The actual control torques to be applied by the actuators

are obtained by solving equations (4.34) and (4.37) for T1  and

T We finally have:

T I  a (x)(- fl(x) + K (w 1-x) - K2x 2 - g1(x))

+ a2 (x)(- f2 (x) + K3 (w3 -x 3 ) - K4 x4 - g 2 (x)) (4.4.)

T2  a2 (x)(- f (x) + K1(w1-x1 ) -Kx - g(x))
2 1 1 122 2 -1

+ b2 2( f 2 (x) + K3 (w3 -x 3) - K4 x 4  g2 (x)) (4.45)

When these torques T and T are applied to the joints,1 2

the nonlinear system (4.31) (robot model) has the same dynamic

behavior as the uncoupled second order linear subsystems (4.40).

For this two joint manipulator, a computer simulation was

performed to evaluate the performance of the controller.

We simulated the hand motion from one path point to the next point,

or through the inverse kinematics, from one state of joint positions

to a desired state. Initial data (01 = 1 rd, 92 - -0.5 rd) and desired

joint positions ( = 0.5 rd, O Ord) were arbitrarily chosen.27

% %I
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Table 4.6. Simulation of joint motions from (1,-0.5) to (0.5,0)
with K, = K 3 = 400.

7WO JOINT ROBOT MAN-IPULAT,)R-FEEC3ACK LIN1EARI:ATION
CONSTANT FEEDBACK GAINS

TIME THETA1 THETA2

0 1 00000 - 50000
.10000 .70479 - 20479 .

.20000 .54773 04773

.30000 .50957 -,00957 p.

.40000 .50180 - 00180

.50000 .50033 -. 00033 p-

.60000 .50006 - 00006 %

.70000 .50001 - 00001

.80000 .50000 -. 00000

S",

U,

-,

.- S
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The feedback gains K1 , K2, K3 and K4  were chosen for a

critically damped response. One such a choice is: KI = K3 = 400,

K2 = K4 = 40 . The simulation results are presented in figures

4.6, 4.7 and table 4.6. These results show a good performance.

There are no steady state errors and no overshoot. The convergence

time is 0.75 s and the maximum torque is -2212 Nm.

A more thorough computer simulation analysis will be

presented for the three joint manipulator in order to be able to

compare with the computed torque technique.

Example 4.2.3: Three joint manipulator

The dynamic equations of the three joint manipulator

(3.11)-(3.13) can be rewritten as:

b 2 .2 3 b4 •2 b 3  FR
r - r -. .. g sin +
b 1 8 b1 b b I

r 5; 3 n~ r cos: I Cos: T=-2b 2  c + 4 b4 b b3g c + b4g C + c
4 40 31 4 c

F 
(4.46)

b3

where

b m +

3
b mL + [ mR

(4.47)

b 3 'L + m

" b4 R1



p..

and

Cl b2 + b(Z-3r) (4.48) K

Let the state variables be:

x I  r x 3  x 5  z( .4 9

Sx r x~=

x2  4  6

The state representation of (4.46) is then, "-

x1
x2  f1 (x) 4- u1 (x) 2

3  x 4
(4.50)

x f 2 (x) + u2 (x)

x5  x 6

S6  (x)

where
..

2 1 (.1
c(X) b2 x1 + b4 (-3x) (4.51)

1 2 2 34 2

f2(x) 2 2 4 -- x 2 (4.52)

b F

W1x g sinx3 + (4.53)
1 1

fX b 1X 2X 4 + 2 b x'S 4.4
2 2 c2 I (x) 4 4 (x)

XCos x 3 + -1 b cos x 3 + T (4.55) "%
u 2 (x) b3g c(x) 4 C c(x

PON.

-" * %OP.



F
-3(x) b (4.56)

u3 (x3

System (4.50) can be expressed as:

01 2 3
- XO(x) + X(x)u 1(x) + X (x)u2 (x) + X3 (x)u3 (x) (4.57)

where

2 0 0 0

(x) 1 0 0

x 0 0 0

0 4 1 2 3

X , X X X
f (x) 0 1 0
2

6 0 0 0

0. 0 0 LO 1 .I

U (x), u2 (x), U3(x) are the controls and P 0 is the equilibrium

point of (4.50).

We check again the Kronecker indices.

E. dim R dim {X (P), X2 (P), X3 (P)} = 3

let

2l 1 2O 2 3 03
R IX (p),(adXx )(P),x (P,(adX0 ,X 2 )(P),X 3 (P),(adX ,X 3 )(P ) }

I I

0 0

0 0.
(adXO X )(P) = (p) ..

x,

-2b XlX4 + b 02 c1  4 4 c

0 0 -:

0 0
0 Lo.

S. .. 5- .



p-I

%°oo

1 6

(adX O ,x 2 )(?) = (P) =

x x x
1x2 3

-2 c1  4 0c1

L 0
0 3. '

(adX ,x3 )(P) = (0 ,0,0 0 1 O)t

22 1
Hence dim R 6 and 4 2 dim R" - dim R 3 Z. - 0 i > 3.2 t- ."

The Kronecker indices are given by:

K I 2 K 3 2, K. =0 i 4

Thus conditions I and'3 of the feedback theorem are satisfied.

Also C(P) - R2 . Thus, dim C(P) = 6, which makes condiron 3 true.

System (4.50) is then feedback equivalent to the following
Ve

linear canonical form (4.58):

. . . ...



- - .. . . . . . . . - - - - - - . A2

Uk

y3 = 45

V~ ~ (4.58)

2

5 Y6-

65 36-

where U 1 , uW1 and Li are new free controls. Again, the real
3.5

valued functions hi h 2'h 3are chosen as:

.. h 1(x) x

h(x) =x 3  (4.59)

Sh (x) x35

which leads to an identity coordinate change. The feedback

controls Ul, u2 and u3  given by (4.26) are: %5

uI (x) -f I(x) K KI (w1 -x) I K 2x 7

(x 2  2(x) + K 3 (w3-x3 ) - 4X4

U (x) K(w 5-x) K x6

The explicit control forces FR F and torque T are obtained
R'z

from (4.53), (4.55) and (4.56).

% %5
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F R = bl[- fl(x) + K (w -x )  K Kx2] + b g sin x 3  (!4.63) P:

T - c (x) [ - f2(x) + (3- 3  K x,1 + b gX Cos x3  m

-

- bg o x3  (4.64)

F b r Ks(W-5 - K x6 (4.65)

These control forces FR F and control torque T, "

transform the nonlinear system (4.50) (robot model) into the linear

canonical system (4.58).

Computer simulations were conducted in the same conditions

as for the 'computed torque' technique. We first simulated the"'

joint motions from initial positions (r =I m, 0 0 rd, z = -1 m) -

to desired positions (r 0.5 m, -- 0.6 rd, z -- 0.2 m). K,-:

K3 = K5 = 400 and K2 = K, K6  40A , were chosen for a" -

".~A

I.'.

critically damped response. The simulation results are presented

in table 4.7 and figures 4.8 and 4.9. It is noted that there are ..

'S.-

no steady state errors and no overshoot. The largest control "'

effort required is F z= 4480 Newtons. The convergence time (time

at which the steady state is reached) is 0.7 seconds. This con- ".

vergence time can be further decreased by choosing larger feedback '.

gains, as table 4.8 shows. However, this will result in much

larger control torques and forces. For the 'computed torque'"

technique, as was discussed previously, with a feedback gain Kp ~

rf\ p

5000 we observed a position error of 14 mm (for r and z) and a

maximum control force F 56993 N. So, clearly there is an
z

appreciable improvement in performance with the feedbackoniin

linearization approach. p0

K 00 ad, 0 ee-hsn.o

3 5 2..o6



0
Table 4.7. Simulation of joint -notions S-rm ,0,-i) t.

(o.5,-0.6,-0.2).,

THREE JOINT ROBOT MANIPULATOR-FEEDBACK -_[(EAR1::A7'CN

CnNSTANT FEEDBACK GAIMS.

TIME R PH!

0 1 00CO0 -" 00000

.10000 70480 - 35424- 52-67

20000 547-3 - 5422 27638

30000 50C57 58851 2'532

40000 .50180 59784 20288

.50000 .50033 59960 20053

60000 .500C6 59993 2Z0 0

70000 .5C00 - 59999 20002

80000 500C0 60000 200CC

Tahe 4.3. Position error, -aximum force F and convergence time

as a function of gain K

Feedback Position (F ma Convergence-

gain, K1  error (N) time (s)

*200 0 2240 0.85

400 0 4480 0.6

800 0 8960 0.52

1500 0 [6800 0,36

3000 0 33600 0.29

0
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In the computed torque technique, we have demonstrated that

it was possible to lower the control effort requirements by

utilizing time varying feedback gains. The same idea can be

applied to the feedback linearization. We first specify the

* maximum permissible control torques and forces, and start the joint

motions with small feedback gains. Then as the error positions are

41 diminishing, these gains are increased in a piecewise manner [34].

In this study, we applied this technique to the three joint

manipulator. The maximum torque (force) is chosen to be 400 N.m

(N) and the feedback gains are doubled as long as the torque limits

are not exceeded. Similarly, if the limits are about to be

exceeded, the feedback gains are reduced by half. Again, we

simulated the joint motions from (r I m, * 0 rd, z = -i m) to

(r = 0.5 m, = -0.6 m, z = -0.2 m). The simulation results are -

given in table 4.9a and figures 4.10-4.11. Note a shorter

convergence time of 0.5 seconds, with no overshoot and no steady

state errors. This was achieved with only 0% (400 vs. 4480) of

the control effort required by the constant feedback gain design.

One may try to optimize this technique by using the maximum

torques and forces available, which would result in an even faster /

response. Such an optimization can be accomplished by feedback

gains which vary by a small increment. This increment would depend

on the control limits; and the smaller this step size, the faster

the response. However, as the simulations showed, if the increment p

J"
is too small, the system can acquire a large inertia. Since the P

controls are bounded, this could result in overshoot.

:%.
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Table 4 .9a. Simulation of joint motions from (1,0,-I)
to (0.5,-0.6,-0.2).

S HREE JOINT ROBOT MANIPULATOR-cEEOBACK LINEARIZATIOI.
TIME VARYING FEEDBACK GAINS.

TIME R PHI 0

0100000 000000
00008460 - 01848 97536
1000 94 98 - 06.342 " 90877
15000 .88646 - 13625 - 1833

.20000 81122 - 2263 69795

.25000 .73272 - 32074 57235
2 0000 65193 - 417g9 - 44308
35000 57964 - 50443 327-3
.40000 .52615 - 56802 24184
.45000 .50107 - 59872 2017T
.50000 .50000 -.0000 20000

Table 4.9b. Feedback linearization with optimal time
varying feedback gains. Simulation of
joint motions.

THREE JOINT RCBOT MANIPJLATOR-FEEDBACK LINEARI:,TICN.
TIME VARYING cEE0BACK GAINS.

TIME R PHI Z

0 1.00000 0 -1 00000
.05000 .98194 - 02168 - 97110

10000 03023 - 08373 - 88A36
15000 .84914 -. 18103 - 75862 -
20000 .74474 -. 30632 - 591t8
.25000 63051 - 4a339 - 40882
.30000 54812 - 54226 - 27699

.35000 50648 - 59223 - 21026

,40000 50014 - 59983 - 20022

45000 50000 60000 - 20000

.N

N,

0%
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Using this optimal approach, we simulated the same joint

motions with a torque (force) limit of 400 N.m (N). For these

control bounds, a step size of 0.5 was used. To avoid the

overshoot problem, we switched from a critically damped response to

pan overdamped response in the vicinity of the final desired

positions. The simulation results given in table 4.9b and figures

4.13-4.14 show a decrease in convergence time of approximately 0.1

second (0.4 vs. 0.5) for this optimal approach over the case when

/. the feedbacks gains were doubled.

This optimal approach needs further investigation in order

to determine the exact relationship between the feedback gain

increment and the control bounds, with the overshoot as a

constraint.

A control system is said to be robust if it can accommodate -.

disturbances, parameter variations, and model inaccuracies. We

tested the robustness of our nonlinear feedback controller by

introducing an error in the actual computed control torques. As

table 4.10 illustrates,up to 60% error still gives a good

trajectory tracking. So, the controller is quite robust.

Finally, we simulated the preplanned path motion of table

4.4 for the nonlinear feedback controller and the 'computed torque'

controller. The time varying feedback gain technique was used in

both cases. For the nonlinear controller, we specified a maximum

allowable torque (force) of 400 Nm (N). For the 'computed torque'

technique we permitted a maximum torque (force) of 5000 Nm (N).

..

4.'
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Table 4.10. Effect of disturbances and parameter variations on the
tracking accuracy.

Final position error

Percent of 4-
error in Ar AO Az
controls (rm) (mrd) (mm)

10 0.08 0.003 0

20 0.15 0.006 0
a-

30 0.3 0.02 0.001

60 t . 2 0.2 0.1

Table 4.11. Path tracking simulation.

Feedback
linearization 'Computed torque'
T 400 Nm T = 5000 Nm
max max

Maximum Final Maximum Final
tracking position tracking position

Joint error error error error

Ar (=m) 2 0 11 4

AO (mrd) 2 0 10 4

Az (uM) 3 0 11 4

iti

.,

I-'

V.
.p.'-4

:.-.:

:-.:

........... _



Comparative results are presented in table 4.11. We note

that the feedback linearization design yields a smaLler tracking

r error and no final position error. However, the 'computed torque'

design results in larger tracking error and a steady state final

pposition error. Again, it appears that the feedback linearization

approach has a better overall performance. This approach combined

with the time varying design results in fast and accurate tracking

with relatively low energy control requirements.

.5 I-
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CHAPTER V

. CONCLUSIONS

The robot control problem in general consists of planning

trajectories which describe desired hand motions, and then

controlling the robot to ensure that those trajectories are

correctly executed. In order to move the hand along a trajectory,

control torques must be exerted by actuators at the joints. Thus,

it is necessary to convert the desired hand trajectories into a

time sequence of desired joint coordinates (inverse kinematics).

The dynamics of a n-joint manipulator is very complex.

The resulting dynamic mathematical model is a system of n highly

nonlinear and coupled second order differential equations. For a

six-joint manipulator, this system can contain hundreds of

algebraic terms. The dynamic control of such a system is then the

problem of controlling a multi-input nonlinear system. For robots,

many control strategies have been developed, among which the

commonly used open loop control is the simplest.-

In this thesis, we presented and analyzed a widely used

independent joint control method, the 'computed torque' technique.

This approach is basically a PD action law with some nonlinear

compensations. The simulation study confirmed the fact that the

independent joint control requires high-power actuators for

.4.".
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adequate path tracking. We demonstrated that it is possible to

lower this requirement by using time varying feedback gains.

In this thesis, we also have studied a nonlinear control

approach based on feedback linearization. The feedback

linearization is a global linearization of a nonlinear system via a

coordinate change and feedbacks. A recent development in this

theory is a theorem which gives necessary and sufficient conditions

to linearize a nonlinear system [25].

To design the nonlinear controller, we first began with the

derivation of the state space representation of a n-joint

manipulator dynamic equations. This state representation led to

Kronecker indices all less than or equal to 2. We then showed that

the three necessary and sufficient conditions of the feedback

linearization theorem are all satisfied. The fact that all

Kronecker indices are all less than or equal to 2 resulted in a

linear canonical form composed of n linear, time invariant, second

order, uncoupled subsystems. The control problem was then reduced

from controlling a multi-input nonlinear system to controlling n

uncoupled linear second order subsystems. Each subsystem was then

stabilized by state feedback. Finally, we constructed a general

feedback control algorithm, which can be implemented on a

computer.

We illustrated this approach by two design examples.

Computer simulations were also conducted to analyze and evaluate

the performance of the nonlinear controller. The simulation

results show satisfactory performances. We obtained a fast
%A
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resPonse with no steady state error and no overshoot. The

performance was further improved by utilizing the time varying

feeoback gain technique. The maximum required control torques and

forces were reduced and the response was Easter.

In practice, it is desirable that a control system can

reject disturbances, parameter variations and model inaccuracies.

We tested the robustness of the controller by introducing an error

in the actual computed control torques and forces. It was found

that the controller is indeed robust. This may suggest that if

on-line computation of the controls is a complex problem, the

dynamic equations (used in control computations) can be simplified

without loss in dynamic performance.

Also, a path tracking motion in joint space was simulated

for both the feedback linearization design and the 'computed A

torque' technique design. The simulation results show a

substantially better performance for the feedback linearization

approach, which yields smaller tracking error, no final position

error and lower control effort requirements.

Of course, it would be interesting to see the results of a

practical implementation of this nonlinear control scheme.

However, this implementation is not done in this thesis due to .ic

of robot hardware. It will be done when the robot hardware s

available to us in the future.

We also mention that in spite of the complexi-.

dynamic equations of a n-joint robot manipulator t
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linearization theorem was readily applicable. This is mainly due A'

to the fact that all Kronecker indices are all less than or equal

to two. Because, in general, the conditions for linearization are

restrictive. First of all the involutive condition. In terms of

nonlinear system theory in general, one may try to extend the

applicability of the feedback linearization theorem by seeking %

other canonical forms, in addition to the linear canonical form

(4-2-3). For example, a nilpotent Lie algebra with a special

Vf.

structure. This can be a future research problem.
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In robot control, variable effective inertia and gravity loading effects suggest
the imperative need for time-varying models. It has been shown [1] that proper
use of time-varying controller can produce fast robot manipulator motion without
causing undesirable overshoot. Most of currently available methods of controller
design require precise parameter values of the plant, which are often impossible or
impractical to have in practice. In recent years a new control design philosophy
has emerged. This is the intelligent control (2]. An intelligent control is capable
of updating its control strategies through learning. It is operating on heuristic as
well as analytic reasoning. It employs both quantitative and qualitative information
in its decision making processes. In fact, very often the qualitative information is
placed higher than the quantitative information in its ruled-based decision hierarchy.

Stability is the first requirement in any satisfactory control action. stability
criteria for linear time-invariant systems are widely available, but explicit and prac-
tical stability criteria for time-varying systems are still lacking. However, explicit
stability criteria for certain special classes [3] of linear time-varying systems are
available. An intelligent control is inherently a time-varying control. In the fol-
lowing we shall examine the stability of a special class of peridically time-varying
system. The effect of rate of parameter variations on stability will be examined in
detail. We believe the results obtained here will provide the qualitative information
that may provide a general guideline for designing an intelligent control of robot
manipulation. As will be seen in subsequent analysis rate of parameter variations
appears to be most critical to stability for frequency in a band centering around the
"resonant frequency" of its constant nominal system.

Consider a linear time-varying system

i(t) = A4(t) + Bu(t) (1)

the stability of A(t) in general is still an open problem. However stability for

special A(t) can be precisely determined. Results obtained from such analysis may
provide useful qualitative information in the design of intelligent control of robot
manipulator. To deal with a manageable problem at this point, we shall assume

L.that A(t) can be separated into

A(t) = Ao + Ai(t)

where A0 is a constant nominal part and A, (t) is a time-varying part that represents 4.

varying parameters in the system. It is further assumed that associated with A, (t)
there is a parameter w that governs the rate of parameter variations in the system.
The parameter w can be viewed as a quantity that specifies how fast the time-
varying controller is changing or how fast the variable inertia or gravity loading of
robot manipulator may change in its operation. The important question of interest

1#



is how w will affect the stable operation of the system, i.e. how w affects the stability
of the system. To gain insight into this problem, we shall examine the following

special system. Consider the system (1) with A(t) being

A[t) a+ -coswt+-bsin cwt 3+ 6 coswt--'/sinwt] (2)
3 + 6 cos wot - -y, sin ot a - -ycos ot -6 sin wt

Equation (2) above can be written as

A(t) = Ao + A1(t) (3)

witnh,*

A a (4a)

and
A, r[coswt+6sinwt 6coswt--sinwt t (4b)
A1 - [6cos wt - - sin wt --y cos wt - sin wt

where A0 represents the constant nominal part and A, (t) represents the time-
varying part due to parameter variations. It should be commented that AI(t) can
also be written as

-. Ab(t =cos Wt - sin wot
Adt) (S -- , (sin wt cos Lot ..

= BK(t) (5a)

or
cos wt sin wt ~
sin wt cos wt b -7

L~t~c(5b)

* These interpretations permit us to examine the time-varying effects of control or
feedback. It can be shown [41 that A(t) in (2) is stable if and only if

-" < 0

and
a 2 o2of + 32 -2, - b + W-2-3c > 0

It will be interesting to see the physical significance of those conditions. Note that
the constant nominal system A0 is stable if and only if a < 0. Therefore for the
time-varying system A(t) to be stable, it is necessary that the constant nominal
system be stable. However such a condition will not be in general sufficient to
ensure the stability under parameter variations. It is intuitively clear that the rate
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of variations in the parameters should affect the overall stability. Here we like to
examine the effect of "; on stability in more detail.

The effect of ,; on stability can be examined through the following condition:

f(w) ( ) +C 2 -f 2 +6 2 )>0 (0)

It is easy to see that if the constant nominal system 4O has sufficient damping to
suppress the perturbation induced by parameter variations. namely if

then the above time-varying system is stable for all a. In other words. if the
magnitude of parameter variations is not large enough to upset the stability of the

constant nominal system, then the rate of parameter variation has no bearing on
the overall stability.

It can also be seen that if the magnitude of variations is sufficient to cause
instability i.e. if.. -2 + 62 > a2

great attention should be paid to the rate of variations. It is found that stability is
determined by a critical frequency band [WI,W 2 1(to be called the instability zone).

I where
WV =2(3- +62- - a) (7a)

,V and
2 + +(b)

The system is unstable if w E [w,w21] and it is stable if w I [La,W 2,. Not that
the instability zone is centered at 20, twice the damped frequency of the constant
nominal system, rather than centering at its undamped natural frequency given by
Wn = v/a2 +/32 , as intuition may suggest.

Some useful observations concerning stability of time-varying system are sum-
marized below:

1. Magnitude of variations is found to be more significant than the rate of
variations in affecting the system stability.

2. For a time-varying system to be stable, very often it is necessary to have a

stable constant nominal system.
3. If the magnitude of variations is lare enough to upset the stability, the

system tends to have the worst destabilizing effect when the rate of variation is in
or near the instability frequency band centred at twice the damped frequency of its
constant nominal system. In other words, it is important to avoid excting possible
resonance. It is also noted that very fast variation (when W is large) or very slow
variation (when w is small) tend to offer better chance of avoiding instability.
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Abstract

The possibility of controlling dynamical systems under incomplete and even
very small a priori information is based on the application of adaptation and learn-
ing in automatic systems which reduces initial uncertainty by using the information
obtained during the process of control. It goes without saying that adaptive tech-
niques in control(but also in filering and prediction) have been extensively studied
for over a decade, and not long ago a rigorous and comprehensive theory of convcr-
gence of adaptive algorithms has emerged [2]. Also in practice numerous successful
applications have been reported ([1], [2]). At the same time little attention has
been given to "learning" and "self learnining" in the world of control engineering
until recently when S. Arimoto and his co-workers [31 proposed a learning control
method called betterment process based on a simple iterative algorithm, which was
successfully applied to the motion control of robots[4]. A closer look at the better-
ment process may lead to other alternatives and perhaps to a unified (generalized)
method. The developement of such learning control methods along with possible
applications and problems for research in learning control form the basis of this
thesis. Before presenting the thesis outline it is important to notice that the terms
"adaptation" & "learning" do not have a unique interpretation and usually their
definitions vary from one author to another or even from one technical paper to an-
other [1]. It is certainly not the purpose of the author to get involve in the technical
terminology but since "learning" seems to be easier to understand in the context of
this thesis, it will be therefore used exclusively (unless otherwise stated).

Outline of the first part

This part of the thesis consists of the following four sections. In the first
section the betterment theory is briefly reviewed : mathematical background, main
theorems, and different schemes are introduced. Some basic remarks and notes end
this section. Section two contains the theoretical basis of learning methods based on
function decomposition, to do that some results from linear algebra and functional
analysis are needed. In the third section a more powerful and general algorithm is
developed. Remarks and discussions concerning the limitations and applications of
the algorithm conclude this section. In the last section of this part of the thesis
the extension of the decomposition techniques to a class of nonlinear systems is
investigated, it is also shown that a combination in a certain way of the betterment
algorithm and the decomposition techniques can yield to a faster learning.

,a

1.0 Betterment Processes

In this section an algorithm called betterment process for linear systems is .
introduced. This algorithm updates the control input based on the previous oper-
ation data and "betters" the performance of the next operation in a certain sense,
provided a desired output is given. In this section three types of learning control
scheme are discussed.
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1.1 Background
Consider the linear time invariant continuous system described by the following

state equations:
±(t) = AX(t) + Bu(t) (la)

y(t) = CX(t) (1b)

where t represents the time in the interval [O,TI. If we assume that for each run the
initial state Xk(O) is the same fixed state x° then in the k-th run the output of the
system(I) is

t

r:.. y(t) = ce."x,,(o) + ceA"-"Bu&(,-)d,- ,,r

= Ce Atxo + CeA(t-r)Bu1(r)dr (1.2a)

= g(t) + 10 h(t - r)uk(r)dr (1.2b)

From (1.2) it is clear that g(t) and h(t) are the same for each run in the interval
[0,T]. That isj g(t) = Ceat X (1.3a)

h(t) = CeACB (1.3b)

Definition 1. (see [3],[5]) A linear time invariant system described by (1.2) is said
to be strictly positive, if for any T > 0 and any u(t), t is in [0, T] the following
inequality is satisfied with some constant a > 0

T t T

Deiiin2 10 U T( t) h(t - r) u(r) dr dt > a]1 U T(t) u(t) dt (1.4)

Definition 2. Given a vector valued function u(t), t in the interval [0, T] then the
L2-norm of u(t) is defined by

" ]1/2

Ilu = ur(t) (t) dt] (1.)

Definition 3. The spectral radius 7y of a matrix A is defined as

-Z. ^to -" 'p{A} = max I

where ci[A] represents the set of the eigenvalues of the matrix A.

Definition 4. A rational transfer function matrix H(s) is said to be proper if

"lim H(s) < C.,



and strictly proper if

lrn H(s) =0 (zero matrix)

In the scalar case. a transfer function is proper if the degree of the numerator
polynomial is less than or equal to the degree of the denominator polynomial.

1.2 C°-Type Betterment Process
Consider the linear time invariant continuous system described by (1) where

the input vector u(t), and the output vector y(t) have the same dimension. Also
suppose that a desired output vector yd(t) is given over the interval [0, TI, then the
C ° -type betterment process is defined by

utL+t(t) = uk(t) + rek(t) (1.G)

where

ek(t) = Yd(t) - yk(t) (1.7)

and r is an m x m constant gain matrix to be defined. y.(t) and UZk(t) are
respectively the m-dimensional output and input of the system (1) in the k-th run.

Theorem 1. Suppose that the linear time invariant continuous system (1) is
strictly positive and

1s = -yI :1

I is the m x m identity matrix and -f is a suffciently small and positive constant. N

Then the C' -type betterment process is convergent in the sense that

I[ek+iII 5 PilekIl (1.9)

where
0<p<l

The proof of this theorem can be found in [3].

1.3 C1 And Mixed Type Betterment
The C1 -type betterment is described by the following simple iterative rule of ,

input modification:

d .-%
uk+I(t) = u(t) + ry{Yd(t) - Y(t)} (1.10)

Here also, Uk(t) and y(t) are the m-dimensional system input and system output

respectively (the system under test is system (1)). The constant F is an rn x rn .,m

constant matrix called the "gain matrix" J

3 --. ... .-. , -;-*.
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Theorem 2. The CI-type betterment process defined by (1.10) converges in the
sense that as k - 00 yk(t) -- Yd(t) uniformly in t over [0,T] if the following
conditions are satisfied:

JI,,, - CBrll < 1

where 1.l is the matrix norm induced by vector norm v and

jjvjj. = max Ivi

2:

Uo(t), yd(t) are in C1 [0, T]

3:

Yd(O) = CX0

The proof of theorem 2 can be found in [3].
Obviously, since the parameters of the system (1) are assumed to be unknown

condition 1 does not help in choosing the gain matrix r. In comparison with the '
above two types of betterment, it is also useful-as will be shown in the next
subsection-to mention the so called mixed-type betterment process defined by: 4

d
uk+l(t) = Uk(t) + (p + r" ek(t). (1.11)

1.4 Remarks And Discussion
In the above subsections different function norms have been chosen in evalu-

ating the performance of different types of betterment processes. For the C1 -type
betterment the uniform norm 11.11. becomes inadequate when the considered time
interval (0,T] expands, because the constant A becomes too large. Although it can
be shown that for an asymptotically stable linear system a fixed value for A is per-
mitted for any expansion of the interval [0,T], it may be more suitable to choose
some other kind of function norms, especially when the desired output Yd(t) is de-
fined over the semi-infinite interval [0, cc). For example, if we consider the L-2 norm
for the CI-type betterment process and the desired output yd(t) is defined over the
semi-infinite interval [0, oo) then it can be shown that

ek+I(t) = (Im -CBr) k(t) - CAe '-?'BF~k(r)dr (.2
Jo

provided that all eigenvalues of matrix A have negative real parts. Now if we take
the Laplace transform of the above equation and denote

Ek+I(S) = C{,;+1(t)} ..

4
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Ek(S) = {4(0) (1.13)

H(s) = C(sI - A)_ -B

then we get
Ek+,(s) = (I. - sH(s)r)Ek(S) (1.14)

By putting
7 = SUpP{Im - jwH(jw)F} (1.1).

where p{X} is the spectral radius of the matrix X and JiEli is defined for a vector
valued function E = (Ei,..., Ema)T by

IIEII12 = E,(J'w)l" dw(1G)..

/ I ".. 

we get

IEk+ill < "fIIEkII (1.17)

which implies-according to Parseval's equality-the following inequality

14&+ 11 < 7li+ki (S)

Therefore we can conclude that the betterment process converges in the L2-
norm sense if 7 is less than unity. However this is impossible unless the denominator
of H(s) vanishes at s=0 as one can see from equation (1.15). This same remark is
also relevent for the C' - type betterment process. In this case and considering the
frequency domain (as was done above) the convergence of the process is assured if

7o = supp{Im - H(jw),} < 1 (1.19)

However this condition is not always satisfied for linear causal systems with
a proper transfer function matrix, because in general for such systems H(s) - .
0 as s -4 oo. In view of these arguments the convergence of the mixed type
betterment process can be assured if one can choose the appropriatt inatrices F
and 4 such that

7y= supp{I,. - (( + rjw)H(jw)} < 1. (1.20)I-.,

which leads to the following question : What is the class of linear dynamical sys-
tems for which such matrices 4P and r exist ? The study of this question and the
question of using other types of betterment process with different function norms -C'
are interesting subjects of research.

Before ending this section it is necessary to mentione that for the above al-
gorithms it is sufficient (but not necessary) to reset the initial state in each run
however it is necessary that for each run (1.3a) holds. In this case condition 3 of
theorem 2 changes to

yd(O) = yk(O) for all k

5
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Example 1.1
To see the applicability of the scheme presented in this section. consider the

following system:

LY + Bu

Y CX (1.21)

Where "-K]

~4

A=[u B2  C [O 1]A-1 -21

and the desired output is

Yd(t) = 12t 2 (1 t) (1.22)

t E [0, 1]. The Cl-type betterment has been chosen for this example. Since CD = 1
the assumption

III- rCBIIk, < 1 (1.23)

is now given by:

I1 - 171 < 1 (1.24)

In this particular example we choose the constant r to be

r = 1 (1.25)

Figure (1.1) shows that in a few iterations (k = 4) the desired output yd(t) is
achieved. Finally, it should be noted that it is impossible to choose y(t) = xl(t) as
output of the system (1.21) because in this case CB = 0 and there exist no r for
which (1.23) can be satisfied.

2.0 Betterment Process Based On The Decomposition Of Functions
In this section an iterative method for betterment process is developed. The

desired output yd(t) is a continuous function defined over the interval [0, T] where
T < oo is a given constant. The desired output yd(t) of a single-input single-
output linear time invariant continuous system is expressed as a linear combination
of functions from a complete orthonormal set given apriori. The iteration method
is then applied on such decomposition.

L
2.1 Theoretical Background

The following definitions and theorems are needed in the developement of the
scheme presented in this part.

6
NO
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Definition 5. A set of functions o,(t) i =1, 2.... defined on an In t eral "t It,2'

is said to be orthogonal if

(2 0. j

1~(t)61(t) di t k~, (2-

and orthonormal if in (2.1) the constant k,=1

Definition 6. The orthonormal set {0 1 (t), o 2 (t)-.. is said to be complete if and
only if it is not a subset of a lar~ger orthonormal set.

Let the approximation of f (t) on [t1 , t,,] for a given set of n orthogonal functions

the mean square error (MSE) between the true value of f(t) and the approximation

Z~cioi(t) is given by

r -2pt2 '

MSE At) - Xc~,(t)I dt (2. 3)
t2 tl t

It can be shown that the best approximation of f (t) on [t1 ,t 2] in the sense of
minimum mean square error is wvhen ci, i' = 1, 2, ... , n are chosen as follows

where

rt 2  (2.5)
=i Id(t)dt

Definition 7. The function 1(t) f f(e, N, (D) defined in the interval [t11,t2] is said
to be an e -approximation of a given function f(t) on the interval [t11,t2 1, with respect
to a chosen set of orthogonal functions described by the vector valued function:

=[0 1 (t), 0 2 (t), 03 (t),. 0(t]

if for a given positive e there exists a number N such that for all t in [tl, t2 ]j

I<-I <efor n> N

lemma 1. Let the real valued function f(t) be square-in tegrable on the interval
[ti, t,2] then the e-approximation of f(t) with respect to (P is given by

N

f(t) = co~'(t

7
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where ci are defined by (2.4) and (2.5)

There are many sets of functions that can be used to represent a function on an
interval [tl, t2]. For examples the sets of {cos(nt) }.
{sin(nut)}. the set of Walsh functions and the set of Legendre functions defined on
[-1, 1] by

2n +1I
o0 (t) = V'2, o(t) =t 3/_2,... ,(t) = ,Mp(t)

2

where the Legendre polynomials p, (t) are generated by the formula

1 dn 
-

P (t) = - (t2 -_ 1)n
2nn! dtn

In this part-as previously-the L2 norm will be used. For that reason the
following two theorems (see [6] for proof) will be important in establishing the rela-
tion between the concept of multiplier (linear, continuous time invariant operator)
and the concept of transfer functions of the space K(O) which contains all complex
valued functions s -* H(s) of the complex variable s, and it is bounded and holo-
morphic in the open right half plane {s : Re(s) > 0}. K(O) is normed algebra under
the pointwise multiplication of functions and under the norm

IiHII= sup IH(s)v
Re(s)>O

Theorem 3. (L2- representation theorem) Let M(L2) represent the algebra of all
multipliers in L2. Then there exists an isomorphism of rings such that to each A in
M(L2) there is assigned a transfer function H in K(0) satisfying

C(Af)(s) H(s)C(f)(s)

for all f in L2 and all Re(s) > 0
(ii) .:

1AIl = ]HI,

For completeness the L 2-representation theorem is also given.

Theorem 4. (L"2-representation theorem) The ring of all multipliers in Ln2 is
isomorphic with the ring of all n x n matrices over K(0), in such a way that to each
A of M(L"2) there is assigned A- in K(O) " ' , called the matrix transfer function of
A such that--'--)'.)("

(£CAf)(s) = .A(s)(,Cf)(s) .,

for ali f in L"2 and all Re(s) > 0

The proofs of the above two theorems are found in [61.

. 2.2 Developement Of The Scheme

S



2.2.1 Developement Of The Iteration Method
Let the set {o ),(t) 2 (t),..,¢(t)} represent a set of orthonormal functions

defined on [0. TI where T > 0 is a given constant. Consider also the vector valued
function [( = (t), 02(0), 03(t), . , 0"(t)1T

Let Md(t) be the e -approximation of the desired output of a single-input single-
output time invariant continuous system and defined as

n

yd(t)= 6 o? (t) (2.6)

and let the input and the output of the k-th run be respectively e -approximated
by

n

iik(t) = 40 () (2.7)
fl~
V n

(t)= ai(t) (2.S)

From (2.6) and (2.8) we get

ek(t) = 9d(t) - k(t) = -(20

i~l

In this case we can use the following vector representation

02(t)

iik(t) [0k= , 0k }) = (k)-D (2.10)

L €.(t)]

where 3(k) = [313 2 n,1 T Similarly we have

2 T) = r(k),P, _q(k) = c ka,a k,..., a k] (2.11)

and
d(t) = drq, d. = [ad, .. a ]' (2.12)

If we consider the C°-type betterment we get for t in [0, TI

Uk+ I+(t) - 0 (t) (2.13)

where

0

o-.



= - (2.14)

In vector notation equation (2.14) is equivalent to

)_(k + 1) = _3(k) + -y(d - a(k)) (2.15)

Now consider that yk(t) and uk(t) are related by a linear operator L as follows

Yk(t) = L(Uk(t)) (2.1G)

Therefore

yk(t) = (-a(t)) (2.17)

But since L is linear then

n :

yLO(t) = E L(Oj(t)) (2.1S)

In the basis {¢,(t),... , (t)},L(Oi(t)) can be written as

L(Oi(t)) E jjt (2.19)

or in vector form

L((D) =PD(2.20)

where P = [piJ] is a n x n constant matrix. Therefore, in vector form (2.18)
can be written as

!/k(t) = 3T (k)P(D (2.21)

Using (2.21) and (2.11) we have b

a(k) = 3(k,) (2.22) Ile

Plugging (2.22) in (2.14) we get

_(k + 1) 3(k) + -(d - prd(k)) (2.23)

or

O(k + 1) = (I- YpT)3(k) + yd (2.24)

The convergence of Equation (2.24) and the choice of y are stated in the foi-
lowing theorem.

%
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Theorem 5.

Let Yd(t) be a given desired trajectory defined over a time interval [ti, t 2 ] and

let ek(t) be as defined in (1.7) and jk(t) be its E -approximation with respect to (D.
Also let

L((D) = P-D(2.23)

where P is a N x N constant matrix, and L is the linear operator representing the
system. Then

IVjkjif 0 as k C(2.20)

if and only if

(tr(P))2 > (N - 1)IIPII}. (2.27)

where IIPII2 and trP are the Forbenious norm and the trace of P respectively.
Proof:
From (2.8) we have

n

jk+I(t) = ( - + )6,(t) (2.28) "

By letting

_, ( + 1) [ad af+l'. d _ , ,+iiT.'_! :

we get "

Sk+1(t) T _(k + 1)(D (2.30)

Also (2.29) can be written as
A *1

-(k + )=d - q( + 1) (2.31)

Now using (2.22) and (2.24) we get from (2.31)

p(k + 1) = d - P3(k) - -!( - a(k)) (2.32)

L~h or

'p(k + 1) =( p)T,(k) (2.33)

Without loss of generality it is assumed that the basis is orthonormal therfore we
conclude using the definition of L-2 norm

T

JO k%

that
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Ieik+ = [ (k+1)2 = j (k+l)lj (2.34)

To simplify the notation let

F =I - 7YPT (2.33)

(2.33). (2.34) and (2.35) imply that

llek+1Il = JJF (k)jj (2.36)

Consider the Forbenious norm of the matrix F which is equal by definition to

IF1Fp = [tr(FTF)]/ 2  (2.37) OF

then it can be shown that for any v, w in R" we have

I.N
IIFvI __ IIFIIF IlVll (2.38) Z.

in particular

llF _(k)l _ IIFIIF ll E(k)ll (2.39)
By letting IIFIIF = p and by choosing -' such that 0 < p < 1 (2.39) implies that

114+111 Plll (2.40)

or .".

o0< Illl <- pklleoll -- 0 ask -k c (2.41)

In this case the algorithm (2.24) converges in the sense of (2.41). If we plug (2.35)
in (2.37) we get

tr(FTF) = [Y211Pl12 - 2ytr(P) + tr(I)] (2.42)

For tr(I)= n we get

tr(FTF) = [-r21lP1l 2-- 2-ytr(P) + n] (2.43)

Equation (2.43) is quadratic in -y. There will be always an a for which (2.43) is < 1

except when

(tr(P))% < (n - 1)!lPlf . (2.44)

In this case p is > 1 for all and the algorithm (2.24) diverges.

2.3 Remarks and Discussion

12 ":
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At the end of this subsection two points need to be mentionned: The first
point is that as in the case of C°-type betterrment it can be shown (using the
L2-representation theorem) that if the transfer function of the causal system under
test is proper, the algorithm (2.24) may diverge. The second point is that in this
section the Forbenious norm was chosen mainly because it is relatively easy and
inexpensive (computer time) to numerically compute. In future work other matrix
norms will have to be tested and their relations to the rate of convergence of the
algorithm should be determined.

Example 2.1
The applicability of the result of theorem 5 is illustrated in this example. Con-

sider the first order linear time invariant system described by the following transfer
function:

F(s) = 100 s +09
S +0.9

For easy checking with analytic result let the desired output yd(t) be:

yd(t) = 3.46410t - 0.73205

which can also be written as in (2.6)

Od(t) C1e (t) + c202 (t)

where

C --

C2 -1

and
(t)= 1

02(t) = 2V3t - v/3

are two Legendre functions. In this case N = 2 and

p [99.62 -. 191
.19 99.94

the condition (2.27) is satisfied and the algorithm (2.24) converges in two iterations
as it is shown in figure(2.1)

3.0 Comparison of Learning Algorithms

13
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M In this part a comparison between the 2 methods introduced above is presented.
Based on the decomposition technique and the anology with the C l -type betterment ,.

an extension and generalization of the method of section 2 are presented.

3.1 An Extended Algorithm
Let us now use the decomposition technique on the C'-type betterment. Again

using the same notation as in part 2 we will have

a'Od( t) dr T, 3.1) :

Z~k~) = .q~rk)@3.2)

5(k) .3 (k)P (3.3)

From the C'-type betterment formula we get

lk+i(t)= ik(t) + 6 d(t) - Yk(t)} 3.4,
dt

or '
'"

3(k + 1) _(k)-, + O(dr  a(k))' 35 --.

Let

n

1en(t) = n( t

0 ()a l a2 aint)t)

(3.7)= .5

or in vector form E 01 (t) 1 a11  a1 2  "" a.. [ 0(t) 1.

therefore.

= .4( 3.S)"

Using (3.S) in equation (3.5) we get "-

3r(k +- I) = 3_r( k)(, +- 61_/ (I T(k)).4D (3.9)

Let P be the matrix of the operator L in the basis [o,(t] i.e.

14
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therefore

a(k)=pT3(k) (3.10)

Nowv we have

3 T~ T + 6(dT 3
(k + 1) 3 -k k))

= 3 (k)[I - 6PAI + 6dTA)>, (3.11)

'pd

3(k+1) [I- -6Ap 3(k)+6A d (3.12)

If we let

PA=R (3.13)#-

A Td=V (3.14)

then equation (3.12) becomes

E(k + 1) = [I - 6RTI3(k) + 6V (3.13)

t (3.13) and (2.24) are very similar therefore we can conclude that the
C0 -type betterment and Cl-type betterment are just two different ways of writing
the limitimg case of algorithm (2.24). On the other hand, one should notice that
equation (3.12) can be also arranged in the following way. Let

M = A (3.16)

then using (3.16) we can write (3.12) as

0(k + 1)(-- IT]3(k) + Md (3.17)

This important result is generalized and discussed in the next subsection.

3.2 Generalization Of The Algorithm
The method of section 2 and the extended algorithm of subsection 3.1 (equation

3.17)) can be combined in the following way. Assume (like in the case of mixed type
betterment) that the e -approximation of the k + 1 input Uk+i(t) is given by the
following iteration:

= i(t) + 1y(It - )k(t) + 67-fid yk(d (3.17)

1A!
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then T3 jd T'

letw,"'

LODP) = P'I' 3..9"

therefore .

S..

w~ k,") =pr 3 k l'.

"2S.

,, which giVes "

3Tk + 1) =3r(k) d (k)P) -t- 6(dr - 3(k)P)At 3.2 .

"3r(k + 1) = 3r(k)[I - -,,P - 6P.41 + dT[(TI + 0.4]}@ 3. 22'""

which implies that F

3(k + 1) 6A [I-7 v -&rr(k) + (11 + 6A]_ (3.23)

Let

TV

Q =(7I+ 6A 3.24 .

then we can arrange (3.23) as

3(k + 1) = p- 3(k) + Qd 3.23)

where Q is a constant n x n gain matrix. Equation (3.25) can be therefore

considered as a generalization of equation (3.17) and equation (2.24)
The convergence of tha above algorithm is given by the following theorem

Theorem 6. For the problem considered in theorem 5 and a given desired trajcc- '

tory Yd(t) defined over the time interval [tl, t ], and for a given set of orthog-onai

functions defined by the vector valued function -r if there exists a constant .V x .X
matrix Q which.satisches the following condition

III-_ Qp*IF < I _

then

Proof.
In the previous subsection we defined

3 +(t) = T(k + + 1),Td (3.26)

where

16
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=~ d -Pr(k ±l) 3.27

using iteration formula (3.25) we get

,;(k-- 1)= :(k)- PTQ k) 3.2S

so

-(k- 1)=I-pTQ).-) 3.2S
,.J

or

;(k + 1) = F,i k) (3.301 .0

where F is a n x n matrix defined by

F I~~pTQ (3.31)

If we use the Forbenious norm for the matrix F and the L2-norm for the vectors

*f k + 1) and ,£(k) then the inequality (2.30) implies that

I1p(k+)Il __ IIFj F IIY( k) l 3.32)

Let

p l =p_ o C

then by choosing Q such that ">

O~p<1  .
we have

lik I -- + 0 as k ---

and the convergence is assured. From (3.25) it is clear that if P exists then the ,
best choice will be Q = p-r. In this case we have 3(k) =p-rd for all k > 0 anmd

the algorithm converges in one step.

Example 3.1

Consider the following system:

-r = .Ax + Bu

y = Cx

17 "-
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where

X I.

0~[1  -2] 1=~]S

and the desired output is

Yd"t) = 12t 2 (1 -t)

, for t in "0. 1]. For this system the condition (2.27) of theorem 5 is not satisfied.
howevpr by choosing a set of 4 Legendre functions with a matrix Q

-100.58 177.64 -166.63 190.SO

- 176.70 2S0.0 -272.10 302.13
- 270.66 -304.80 311.0
190.70 299.10 -303.60 230.50.

for which the condition of theorem 6 is satisfied, k(t) converges to yd(t) in 4 it-
erations as it is shown in figure (3.1). We notice also that since in this example
CB = 0. the conditions for the convergence of the C'-type betterment as has been
shown in [3], [4] are not satisfied. Figure (3.2) shows the divergence of yk(t) from
the desired trajectory yd(t) as the number of iteration k gets larger. However, for a
system with the same matrices A and B as the system considered in this example

but with matrix C equal to
C=[0 11

the C'-type betterment converges as it is shown in figure (1.1).

3.4 Remarks And Discussion
In this part an iterative method which can be considered as the generalized

version of the algorithm (2.24) was developed. This method is also based on the
-' assumption that the system should be linear time invariant and continuous and

that the desired output yd(t) should be given on the entire interval [0. T. The
., Convergence of the algorithm, then depends only on the possibility of finding a

matrix Q such that the Forbenious norm of the matrix F is less than unit-. As far
as the numerical considerations are concerned the algorithm developed in this part
is easy to implement. Except for the decomposition of the desired output yd(t),

,.. there is no integration or derivation to be computed. Furthermore. this algorithm
will converge in one step if the inverse of the matrix P can be numerically computed.

L
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Presented at the 18th Asilomar Conference on Circuits,
Systems and Computers, Nov. 4-7, 1984, Monterey, Calif.

On the Desinn of Time-Varying Controller for
Producing Desired System Responses-

min-Yen Wu

Department of Electrical and Computer Ennineering
University of Colorado, Boulder, CO 80309

Abstract: left half complex plane, the time-varying control-
ler may allow the overall system eigenvalues to

It is well known that in linear time- be moving in the complex plane, even in the onen
invariant design, response speed and accuracy right half complex plane for some intervals of
tend to be conflicting requirements that cannot time, provided that at the end the eigenvalues
be achieved simultaneously. For example, fast of the systems are placed at some desired steady-
response always results in a large overshoot, state pole locations in the open left half
Fast response without overshoot is desirable in complex plane to insure the overall system stabil-
many aoplications such as robot manipulator ity. The idea of allowing the poles (the eigen-
control. In this paper, it will be demonstrated values) to move around makes it possible to
that the use of time-varying controller can achieve a response with short rise time, no
produce a response with short rise time, no overshoot and short settling time, which are
overshoot and short settling time that are impossible to attain in time-invariant design.
impossible to attain with conventional time- Several methods of designing the time-varying
invariant design. Methods of designing the controller will be discussed. A new concept of
time-varying controller will be discussed. In employing dynamic Pole assianr" '4-
particular, the method of dynamic pole assign- constant time-varying feeatacK gan ror tne
ment and the use of piecewise-constant time- controller will be emphasized.
varying feedback gain implementation will be
emphasized.

II. Controller Design Methols

The problem considered is as follows: Given
a plant with transfer function S(s) or it is
defined by its state representation

i(t) = A i() + Bu(t) (la)

. . . .. ... . . . (t) = C X (t) _ (lb)

-. where x(t):R , u(t)cR and y(t)ER. Also given is

In linear time-invariant system design, the a desiFed response y (t) to a given input. TheIn lneartimeinvaiantsystm deignthe objective is to desi n a controller so that it(r
performance requirements of fast response and o
good accuracy tend to conflict with each other. can be achieved.

So compromises often have to be made. To ensure If
overall satisfactory performances, time-varying If the requirements for h() are such as

controller that adapts itself to yield optimal the rise time, the overshoot Ad the settling

performances is needed. In this paper it will time are not very stringent, then conventional
be demonstrated that the use of time-varying lead-lag compensator (11 or the state feedback %
controller can produce a desired response with with constant gain matrix [2] will be adequate.

short rise time, no overshoot and short settling -However, if y (t) is required to have very fast
shortisetime, oar mpose o and ta in g- -response without overshoot, for exampla, y (t)tie, which are impossible to atain with con- -is to approximate, y(t) = I - exp(-t2), 4hen
ventional time-invariant design. It is whown
that with time-varying controller, not only the one has to resort to dither time-varying or non-

overall performances are improved. but the linear controller. Unfortunately, the stability

system stability requirement is also greatly of linear time varying system [3] or the non-

relaxed. In contrast to the linear time- linear systems [4] are very difficult to assure.
invariant design which requires all eigenvalues In this paper, several controller design methods
invrithe desig whih reques al beinues ethat will assure stability will be discussed.
(or the poles) of the system to be in the open One particular method which uses oiecewise

- .constant time-varying state feedback will be

*This research is supported in part by the emphasized.
Office of Naval Research under Contract N00014-K- ---
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(1) Optimal Control Tracking Problem Approach (5] a sequence of piecewise constant gain matrices ,
which can be easily designed. The stability

% The optimal control theory can be used to assurance and gain computations will be given in
design the controller so that the output of the Section III. A design example that illustrates
system will track the desired response ud(t), the procedures is given in Section IV.
The controller is to be designed according to
some chosen performance index. In such design,

Sthe controller turns out to be a time-varying III. Key Results for Piecewise Constant
controller which requires the solution of a Time-Varying Controller Design

matrix Riccati operation. Hence the controller
is difficult to implement. Furthermore, the Theorem I. (Stability Assurance)
choice of weighting matrices in the performance
index for guaranteeing the desired response is Consider the system (1). Assume that 1A,B)
not transparent. is completely controllable. Then there exists

a set of constant matrices K., Z=O, I, 2, N-1
such that with the state feedback uJl - vi -,

(II) Multi-Segment Decomposition of Desired K(t) x tl, where
Response Approach

SK tE[,'' i. 0, 1, 2, . N-1.

A time-invariant system may not produce the K zC]- C ,[t, , "...-
desired response over the entire interval of %KNI C N (4)

operation. However, by decomposing the desired
response into several finite subintervals, say N, the eigenvalues of AiC) = A - SKCtl can be
itis possible to approximate the desired response arbitrarily assigned over each interval tELC. ,
by a linear time-invariant system over each Furthermore, if all eigenvalues of A.-. .A- 'B,,
interval of interest. Although the system have negative real parts, then the system is st le.
appears to be linear time-invariant over a given
subinterval, it is time-varying and nonlinear Proof
over the entire course of operation. Under the
multi-segment decomposition approach, two con- The pole assignment part is well known
troller design methods are considered: because (AB) is completely controllable. So only

the stability part will be proved.
(a) Direct Control Law Generation Method

For any bounded input v(t) we have for
From the desired response ad (t) over the C[CC.)

" - interval it., 4., t1, I0.......N-i, one
determines th co- sponding desired state x(,' A.'t-t C AI--
and x({t .. The control law U(C) for Cit.,,L xftl-e ,L ,- t). e BV(T(5)
that-iiti transfer x(t., to x(t. ) is geneate-
as follows: - - .LO iwhere A. = A - BK., , N-2, and A. is

T -B expiA :e.-t Q ; not required to b stable.

!vt - expiA t -t ,:PC ) Since the linear system can not have finite
4L t. t. % -t,[t escape tine, hence xt: - for all .C <.

S,. NOw for r~rN -
w hnere r A - A C t A

t ,o;i C. e "• BB' e 1- , :tC.e 'd-N 61

'he controller 4s aiain a ti-e-vary-i :on-rn!.er Clearly tC x VfC bocause A i , for
wni-h s I'''Cl mo lele"t. )ne -odi'e .N ind i11 eioenvalues'of A,-. -ave re Tzarts.
approach iS to ork th *me Jiscret :ed olans Hence X - '- VtO and the s?7tem is stable. -
and o ereate a equence of liscrete -ontrn-

S'aws. n th's ase, 3 -u~ti-ate samplln -av
have *o be erviove,1. jeendinq on She -a~cte.- Coent:
is, s of -e lesi-e -es:omse which 4i1 :a'l

for -o-iua' 'ernq )t seqments in the Jecoopnsi- The on!y requirement for assuring the
* -, f , , - his i]prcacn is not werv str1l-nt stabil'tY is *hat A(IC , A. for r , t and A,

eorwtrl. b stable. A.'s for C-N-I ale not required to
'

be ;'able. 'his flexibility permits some A to
x'i '• star" .ae 'eelta.* Appr~tc" be ,nstaole. particularly in the initial phase of

operation, for fast response.

- - , art IeSPrel Lees eme a 1 (Bass-Guru for'ula(
* ' es- '-1 Ve,2~ *vp ~

, I . l"'sc " e : c-'~e, Consider the system (I 2et '(si be the
•"P ,

-
v - -ee' c 'Ccat ''s. hcaricter'stic oolfnominal of A given ty

'e -~ . ....... en :1,,s S )11

'

"--"-" ." ," " ';-" ] ' - --..............-...-.....-............ ,...............,...-.-.-.,-..,-..-.-.......-..-..-".-'..-".-
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d(s) x s ls + •• + a (7) Such a desired response can be described by

Let 1(s) be the desired characteristic poly- y ) + 2 :Ld i (t) + q(t) (I 12)
nominal for the system with the state feedback
ult) = v(It) - Kx!t). Let r(s) be given by with the damping ratio .t)given by

L(s)s = sn + l n l + C (8) C .0 (0, 0.7), + n

If the system (1) is completely controllable, ] 0.5 t[0.7, 1.3) (13)
then the state feedback gain K always exists and 1
K can be computed by 4 t 1.3

.~ 1 -- % -T s I~

K (a T _ a (9) or equivalently by the desired eigenvalues

where (yo," YO? = U, -

T (....II Yi2 )  (-0.5 ] 0.66)
= a , . . . . 1 , 1,

n %
T t'2' Y1' 2Z (-0.13 -1.871 (14)%

n %

F" S is a upper triangular Toeplitz matrix It can easily be seen that for the imolemen-
with first row (1, a,, a2, . . . a,,_ ) and tation shown in Fig. 2 the piecewise constant

time-varying controller gain Kt(t is given by
Q is the controllability matrix of (1)

given by KO z (1, 2) tc(0, 0.7)

(B......... A B) K(t= K, = (I, 1) t[0.7, 1.3) %

The proof can be found in (6], hence it is omitted. K K2 = (1, 8) t>1.3 0151

The pole movement in the complex plane is shown
Theorem 2 (Piecewise Constant Controller Design) in Fig. 3

Consider the system (1). For a given input
,.- v(( let the desired response y (t) be partitioned References:

into N finite segments so that 1 () for
tc"(. t ) be characterized by'l set of desired (1) Horowitz, 1.11.. Synthesis of Feedback Systems,
eigehvaus xyj, r0, 1, 2, . .N-l, j1, 2, . Academic Press, new York, l63.

.. n and Re(yN 1,j)<O for all j-1, 2 . . .n.
Then there existsN apiecewise constant time- (2) Chen, C.T., Linear System: Theory and Design,
varying state feedback K(t), as defined in (4), Holt, Rinehart and Winston, 1984.
that will produce a desired stable response
Furthermore, K. in (4) can be computed from (3) Wu, M.Y. "Stability of Linear Time-Varying

Systems", Int'l Journal of Systems Science,
K T- _ T) S-1Q-I i-0, 1, 2, . N-1 (10) Vol. 15. No. 2, Feb 1984, pp. 137-150. ---

where i. (a m . . , . ) is the now - (4) Hsu, J.C. and A.U. Meyer, Modern Control
vectorIssociied th the char42 teristic poly- Principles and Applications, NcGraw-Hill,
nominal - - New York, 1978. --

S- as(s) = IT c 1s"+.. "+.n= m (s-yij)(ll) (5) Kirk D.E., Optimal Control Theory, Prentice-
j=l Hall, Englewood liffs, 1970

an T
Sand S, and Q are as defined in Le'ma 1. (6) Kailath, T., Linear Sstems, Prentice-Hall,

Proof Englewood Cliffs, 80 . - .. . ...

Theorem 2 follows from combinations ofTheorem I and Lemma 1.

IV. Design Example

2 Consider a plant with transfer function G(s)-I/s . Suppose the desired response adIt) to a
unit step input is as shown in Fig. 1.

, , DT1 o n.
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6th IASTED International Symposium on %

Robotics and Automation 85 %
May 29-31, 1985 Santa Barbara, Calif.

S.|

V :Control er :e5Ign of a %uitl- o~nt ;Ooot "&n,3ulat~r ,

mln- en 4u %

N. M. ArQoUZ

Department if Electr'cal and :imouter Egineer-g

jniversity If Colorado. iou~ier. :0 303C9

Abstract: transformec -nto a set if lec olec secono-oe- '-ear
iynimical ecuations. onsecuert!i, ,ir'oue :aius ' r

Feedback inearization theory ,n Vif'erential geo- design :ecmnicues or near systems :ec:me o.':1s ! .
metric control theory is used in conjunction "ith t-me- "he ise ot reeioacx 7near,zat~on aooriacn :o :es';n -tcot
4arying state feeoack to design the time-varying control- controi:er are reoorteao :o give /ery ;oco s:muiatCin
7or for a multi-joint robot maniouiator control A 3-joint results C7, 3, 0].
rObOt "anioulator is used as in example to evaluate the
controller oerformences. Simulation results snow great In this oaoer. -e snail '"It Snow 10. :nG "eeoaCK%

*premise of emoloying time-varying controller to achieve linearization tecnmiue can is used to ransform -,niy
better dynamic control over that of time-invariant control- nonlinear and coupled -iootic aouations into a set of' 0e
ler. couoled secona-order linear system eguations. "ien :on-

troller design easea in time-varyirg state feedback l1''
","e. 3iscussed. Pna y. c omouter sinuiations -or a 3 ,oint %

1' . Introduction robot iianioulator control are Dresented. 'he simu;ati:m

results snowed clearly tne ootential if a t'me-vary'"l :vn-
Imoelled by concerns about oroductivity. ,orKer troller for acmievinq aster ano ic:jrste resoonse .,ti

shortage. and hostile environments, interest in rosotics smailer control efforts than a convent'onai :tme-nvar' ar
has grown exolosively in the last several years. Most controller.
Industrial robots are basically computer controlled mechan-
ical manipulators wnich can e programmed to perform the
tasks, with minimum or no human intervention, of arc eld- II. fain esuits
ing, paint spraying. assembly, foundry ooeration, etc. A
manioulator consists of a series of links which are :on- Definition 1. KronecKer :noices
nected at joints. Typically they have three to six Joints
(three to six degrees of freodoml with a gripper or end The (ronecxer 'natces 'or a -narx :air A. 31 ire
effector. The joint can Do either a evolute ,oint 'or defined as 'ollows: -at i and L is oef'ed as:
rotational notion 3r a prismatic joint for transiational
motion. Each joint is driven oy an actuator nicl is [B. As, A" ..... A 3]
comanded oy the controller. t

The motion of the robot manioulator is desired to befast. smooth, and accurate. The eden-iooa control method where 1. , a.re Integers, 11mR i s S e limensonrof "is not satisfatory because of variable inertia. gravity Rand im% Z 3. ,nom f an 'iteger ;, tNe <rooecer
% loadng and load iscurances. Therefore the dycontme n it1. 2. . . a re nte ger ,s :ne 'one

%. trol of the robot manlouiator is often of closea-'ooo index K, is derined to oe the totai numoer of , nlcn ire
-* control. The design of controller for the serve system greater than or equal to j i'e..depends an the lynamical model of the system to Do control- '"'-

led. -he dynamic equations of a robot manipulator can oe K. •atit ;  1
K0  obtained either by Lagrangian formulation or the Newton-

% Euler formulation 1-2]. These dynamic equations are Definition 2. :nvolutiveness
highly nonlinear and strongly coupled differential eoua- 1 2
tions. In the past, the controller design is mostly based Let C'(X.A ..... X"'e ia set of smooth sector
on independent joint control (1-2 ]. linearization and feed- fields in with X(l. ., bing 'Imearly -naon-

,W forward comoensation C3-41. One test known example of sucn
approaches is the 'computed torque' technique C3] or the dent for some point 2. Then the set C is said to be n-
'inverse problem' technique oS]. These technioues reuireL= equre volutive, if for any Il X'tC, there axist Smoh. -qal
either the manipulator links being weakly coupled, or acn f " .,
link Deing controlled one at a time and arecise KnowieOQe valued functions (a -(E) such that tN Lie oroduct

-'. of robot manipulator dynamics be knom. Such technioues k i iX,

become less effective for nigh speed and accurate control. (X '(,oo
e It also often requires excessively large control torques mof

or forces from the actuators.
Theorem I. ulti-:nout Feedback .inearration "'eorem

Recent advances in differential geometric control
theory :6-91 provide necessary and sufficient conditions Consider the vulti-,nout nonlinear system if the 'orm
for transforming a given nonlinear system around a given
point Into a local feeaback-.ouivalent linear systlem. L S xOl * )!1 (l)
These results are found to be particularly useful to raeot- SI
Ics applications because the Kromecker indices for such nre x{n

. 
XO(x) and (i). I n, are smoot

systems are mostly less than or equal to 2. 4itM oroperr - -- * .. a m
Coordinate transfomation and feedback transformation, the vector lields n and u 11,. I . , i. are -,I
nignly nonlinear and Coupled roootic equations can as valued smooth scalar functions. CLt e the Do~nt of
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Sntarest 'r !ncr :,ti. -he -e and cea... sut'c.e.t and

COnoan I OAS r the SySteM ()- " -r 'rOneC~er 'cceS

an . A <' :0 m eabaCe Lou #vAi.t :0 .'e 'near ... :
1ini -.I eC:c'.":e ee'e, c "

iv~r~ant :iaoncai 'o'*
A" =rMere

;" i) ,re e.s e i { !} U h : a ,f;

A~~~ .... A" it-

oing an i x vector witr tr :Omoonene Iad m . z. 'oi. X. lax. tC

Sers asewnere. 3 a s
are , . , - ,

here exist ea ;j).. Such "Mt.to f

A lv~ule a eons ()*) -n -i) ol ic w:= od to

Theorem ai A ' ne local control&a1io ty test,. nor 'sy "

C X ' tr eA I "S(ad A c.n ..

(..ad n ad(.(1-

3' " o n s l(e ' (ae yna - ' al o n O .-= ' if f, in

4,.ltiad I. , ieno men 'ofe efo .. 2aov enjtl A.,aore xo c':,.

the) Li groCU i) GS ) n esontAL : e jorIAte 'rnfrAt~ = n

nobeing tr)uct lotations A)Y(,' X ),A

and X. are the i&cobit n of X and Y' itefl eSnc: :ou x.e

trii)For adacri-i, 2e.tsie set C, dn f Ted as 3. Thereore tm laroncKiee ndices are : 's. 3

i*i ;* -i <iX , .(ax3aaX 'A . (ad A )A; Xlo .A n., Ia K,=O or i n. ,rimn 1 2 ,i the zzcnc'on

( d K i 2 A) 
l 0 . iorn n t h i o r e m n s i t o i 3 y - o i : , t O f e a. to n S o .

(adx~t, 
1
- 2.X A... ne o as a' . (ad A staolis 'm acknt *OUIvalnCo -0 need : nec 3ou ly :o3'-

is invo)utive tions M and ii) .n , ,eorem . SincetAe oriin.

. h proof for theorem I can . found 4n 6 . ]. (1) s atisfied with 3,=O Vi. Since usC ' Z'1

Theorem 2. (Feedback Llnearization of qoootic Equation) system (l) vi ocally ontrl aole at :. So zS c tmn i)

Coementsnd ertrim elsehereuton of a~ :ontrol -lct Cf theorem I -s satis 4e nac s. ailtn :Onot
contConsider t on iea eqnaton of same tores -coa ?ces of theorem I are satisean. Therefore system k :an :)&

mani]oula cnonr.eala givenofo ao syenaton

t 7 mmace to 00 feedback duivalent to . were oo)i Cot y, 't

tNaen G(q) (3) can oo mown "Mat trim coordinate :rasormnation qv anc -e

where (a o .. . (m)- is teim *oint position vector.efeedback transform"ation wiall trinsrori- "1

O(q is an n x n matrix reoresenting effective and :ouoled noe h A and 3. a ;nven fl O,.

1'inertia. H(q. 1) is an n x .1 vector representing trim Can- Commts:

trioetal And Coriolis terms and G(q) is an A S vector 1. Theorem 2 snows triat -It'i 'ecoaCK ier:t tne
4,representing them gravity loading terms. Let 3X and hlighily nonlinear and strongly zcugied Oobotl- equations :an

4 1 be transform9ed into a set of i :ecouaoea siecond--i- er
=x , m2.e be cnosen as state variab es In, inear ime-1merlant canonical 'orm itn ouo ,@nois at

rewrite (31 as in (1), where Xia f f ... e , the origin.

a2 f ( ) and X , . ... 4ovs , ..
n 2 l02. -lie Smoothness oou'remt in 4ector ' r n

i. .... .. is an zn x vector withi I in tie2 1 prevents tie 1 1catlon of 'ecbact ?arezat*m to
system witn violent nomli'earlties sucri as stictiom and

element and Zeros elsewnere. u,(jl 4S the control micm colomb friction whlich are always present In act-atzns at

I.contains a nonlinear combination of some torques or forces cobot 3Oiflts. Sucri effects can 36 removed -:m :!-e :yrame'c

a i Aa fa (!)is a smooth real 'unction of x'or All11 macel and Do compienated later by veecforwaro ::rcensat-on.

-'Let P be trim ecui Iibrium point of (I ) for a I X) 0 'or allI

rhen the coordinate transformation iL- and the feedback 111. Controller Desigm

transformation ji(xalf.(irU,'1. 1, 2.......withl~ The objective of trmt robot nanlouiaton :omt-ol -% to

being a mew free control. will transfa )r nlto a 'ed- move them -anioutator from A given :Olst :ohstios

back equivalent linear timina'f~riant canonical 'orm .2( A-h to the -@sired ;oint ioOiti ;_ X

whe re Equivalently, via trmn coordinate transform. this 3 trim

A, JO pII roblem of seeing 'rote tie states j.y_ .f_ :a

5,desired states j.. ... :'- t 'I tesi-3* '3 tO 3
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Let the state variables be:

X2x, = .

The state representation of (Al is then,

.-

( = x
3 1

6 3 "<7.

C -x, b, 2(< x Ix + b4( -3 1

( = 2x) 2' 3 b 2(7

o 4..

b = .,(x) '4

b2 2 3 b 2(T"

b. 2(

. .. ~ (.U(x )  2 bl g i x b

2 2 e .1 (x) - 4 (X)

x Cos X3 Cos x r(!O ,j
.'v l. u2~u (x) = -bg c (x) b g l() + ¢ x-- $ .
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Systm .(IX can be expressed as:

+(x) X (c)u (x) A X(:)u(:) 2 .:<)

where

, (x ) -.'l

6 6

u() ii are the concrols and P = 0 ts che :!quL brir.
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c C1

0
0 30
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R2 2 3

Thus conditions I and 3 of the feedback theorem are satisfied.

Also C(P) = R- Thus, dim C()) = 6, which makes condition 3 :rue.

System (A5) is then feedback equivalent to the EoLlowing

'- C linear canonical form '(A13)
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Y2 = vl
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where ul, u 2 and u 3  are new rree controls. Again, the real .-.

r5 ~valued functions hl, h2 , h3  are chosen as: ,

h I (x) = I "

:-h 2 (x) : x3  (Md)'-.,

h (C<) = :

~~which leads to an identity coordinate change. The S=eedback

controls u1 , u2 and u3  are given by: .

' u l ~~x) - f1(x) + K1 (w[ -×C ) -Kx2"

, f,, u2(~~~x) -, _2(x) , K(w 3 _x3 ) - ~Z .'.n...

, ~ ~~~u3 ix) =' K5 (w5 -x 5 ) - K6 x6  .,,'

- The explicit control forces FR F and torque T are obtained

ro A),(l)and (A)

e6
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F R  -- b l [ - f l (x ) * K t (w j -x 1 )  - K x ., b g s in x3  ek

T -- i(x) [ -  f2(X) + x3'3-3  - X, 4 Z

T 0 gCos × (3

" '" F~z = 3[K5(w'x K6x6"/

These control forces FR, F and con" rolt oraue T,

t . ransform the nonlinear system A:') (robot mode',) into che lInea r

canonical system (A13)..€t "
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Some New Thoughts on Control Design Strategies

Min Yen Wu and M. F. Chouikha
Department of Electrical and Computer Engineering

University of Colorado

Boulder, Colorado 80309 ,,*

decision-making theory. a new field of intelligent control has
A.BSTRACT emerged 18-91. This profound change in control concept undoubtly

will drastically change our future contrc; design strategies In this
This paper descnbes some of our thoughts on future control paper, we would like to present some ot our thoughts on control

JIesign strategies. The controller design is viewed as a general design issues.
Jecision making process. To control complex systems where
precise dynamical models are not available, intelligent control I. An Inspiration
,nouid be used. An intelligent controller is a knowledge-based. rule-

hased. hierarchical controller with variable structure. It optimizes Before we proceed to discuss various control strategies. let
'ultiple objectives with constraints. It facilitates its decision making us first take a look at a well known control problem in our daily life.
Iv control enrichment and observation enrichment. It has memory namely driving of a car. In car driving, the human is the controller.
and is capable of learning from its experiences. Heuristic and In fact, it is an intelligent controller. When we decide to go from a
cualitauve rules are conssdered to be more important than quantitative point A to point B by way of car, we first find out when we have to
and deductive methods in such decision making. As such, input- get there and then try to drive there the best way we can. This may
output Icause-effect) characterization of dynamical system is sound easy. However. it needs the best driving skill from an
emphasized. Design of such intelligent controller calls for the intelligent driver. When we say "the best way' it means somewhat
possible integranon of artificial intelligence and operational research differently from what is conventionally used in optimal control
with the control theory. Finally, it is suggested that integrated theory. To go from A to B in "a best way" may mean to take the
,:ontrol design, which considers jointly the plant, actuators, sensors shortest path to get there in minimum time, with mtnmum energy
and controller at the outset of control design, should replace the expenditure and to have a smooth and most enjoyable drive, etc. In
current approach of designing a controller for a given plant. other words, intelligent control often has to deal with fuzzy system

requirements, to work with multiple objectives and to optimize
performance indices which may not be optimal in strict mathemancal
sense. To choose the shortest path, the driver must know how many

I. Introduction different paths are available and their respective lengths. To drive
there in minimum time. he needs to go at maximum speed with

The majority of control design theories today require rather constraints on speed limit and traffic and road conditions. To drive
precise information on the parameters of the plant to be controlled, with minimum energy he needs good driving control of the car. So
%lost of the controller design is based on the system parameters such an intelligent controller should have a good task planning if it is
as poles. zeros or eigenvalues. In the case of linear systems, very going to have good control strategy. To have good task planning, it
often we begin with the system description of L_- A& + Bu, y = C& needs good knowledge base which comes from instructions or
+ Du or its transfer tunction G(s). The desired system response is acquires through learning experiences. As to the actual control of the
characterized in terms of desired pole - zero pattern, desired moving vehicle, a good control law generated by the controller (the
eigenvalues. or optimization of performance index. Controller is driver) is needed. With the current control method, we would have
then designed through the use of the pole-zero cancellation [1-21, to have a dynamical model with known parameters tor the car we are
loop shaping 12-31, state feedback [4-bi or performance index driving, i.e. some differential equations characterizing the dynamics
optimization 17-91. In almost every case, the precise informauon of of the car on the road. With this parameter information, we will then
the plant parameters. such as poles and zeros of G(s) or the matrices figure out the gain matrix for the state feedback or the controller
A. B and C. must be known in order to design the controller. In the poles and zeros so that a satisfactory control law can be generated.
case when plant parameters are not known, system identification [51 As we know. when we drive we never bother to find out what are
must be done first before the controller design can proceed. In the the dynamical equations, (the state equations or the transfer function)
frequenacy-domain design, pole-zero information on the plant is we are working with. If we had this information, we might be able
needed for pole-zero cancellation and loop shaping. In the time- to drive the car simply with the gas pedal control. If this were the
domain design, matrices A. B and C are needed for checking the case. then very few of us will be able to be a satisfactory driver
controllabthrv and observability and for computing the gain matrices t because the control strategies will be too complicated! ). Of course,
for state feedback and state estimator. They ire also needed in the the car was not designed to be controlled by the gas pedal alone
solution of matrix Riccan equation in the optimal control design. In (even though the speed and direction of the car can be controlled by
other words, explicit and precise information of system parameters is the gas pedal alone if we know the dynamical equations which
indispensable in most currently available controller design methods. accounts for the slope or curvature of the road) As we have seen,
In practice, many control systems, such as robotic systems in the single input control can be very ineffective in a complex control
manufacturing, the discrete-event systems tn production lines, the environment. To make control strategies simple and effective, we
large structure control in space and the socio-econoric systems, etc. should expand our means of controlling the system. In the case of
often lack precise dynarrucal models due to complexity of the the car, we incorporated the brake and the steering wheel The brake
system. high degree of nonlinearity, large uncertainty, large is to control the vehicle speed more effecnvely by providing last
parameter variations and time-varying parameters. It is becoming deceleration, and for deceleration only. The steering wheel allows
more apparent that conventional controller design theories are either effective change of vehicle direction without the need of resomne to
nadequate or impractical for dealing with control of such systems, proper acceleration and deceleration which requtre comple

Therefore, new thinking, new approaches, and possibly new tools computations involving the dyanmical equations and thewill 1-e needed if we are going to control complex systems disturbances. The above observations suggest that effective control

effectively. With the advent ot learning theory in psychology, can be achieved more effectively by expanding the control capability
artificial intelligence in computer s,.eni.e. operational research in of the system, namely through the control enchment stuateg) Now
optimization and the generalization of control theory into a broader let us turn to the question of decision maKing in the controller To
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decide when. and how much to apply to the gas pedal, the brake or imponant to have a good understanding or what the inputs will
the steering wheel, the driver Ihuman controller) just like in many do to the outputs. So quailtative (I e. physicali description or
conventional controllers, makes his decision based on hts the system is more important than the quantitative i e
interpretation of the error signals (such as how close is the car from mathematical) description of the system. Mathemaucal model is
the side lines of the road, how close is the car in the front, how needed mainly for the basic operation of the system, and hence,
much is the speed, how curvy is the road. etc.). In the interpretation better to have the model as simple as possible. As such. lumped
of error signals, the driver focuses his attention first on the polarity 1/) chartacterizaton (e.g. quaditanve cause-effect, relationship or
of the error and then on the quantitative aspects. In other words, the transfer function) will be preferred to the state space
driver focuses pnmanly on qualitative aspects ot the error signals to characterization.
help him decide whether he should step on the gas pedal (to speed it
up) oron the brake (to slow it down); whether to turn to the right or 2. Single-input single-output iSISO) system design should be
to turn to the left. The quantitative control such as how much to replaced by multiple-input, multiple-output iMIMOi design if
change the speed or the dircuon, though important, tends to be more needed through control enrichment and observation enrichment
gradual and is of secondary importance in nature, of the system. It is well known that an uncontrollable or an

unobservable system can be made to be controllable and
The above observations suggest that although both the observable through expansion of control capability or

polanty and the magnitude of error signal shoud be taken into observation capability The multiple controls should be made to
consideration in designing control strategies, clearly there should be be as independent as possible. This control-decouphng property
a difference in their prionty ranking. The error polarity is more will render more transparent I/O charactenzation and hence
important than the error magnitude. There seems to be very little facilitate the decision making of the controller. The muitiple-
compromise on error polarity in decision making. Nevertheless. obervattons of the system should be closely related to allow
:here appears to exist a great deal of flexibility for reducing the --ror accurate and reliable assessment of the system state for

magnitude. It is also to be noted that generations of good con,oi intelligent decision making. In some applications, remote
law requires good observations and feedback. Good dinving control and remote (non-contact) sensing (as in space, nuclear
requires good front, rear and side views from inside of the car. and robots applications) should also be explored. Indirct
Therefore, to have good control strategy, the controller can use as sensing ti.e. multiple information obtained from signal
many sensor feedbacks as possible. This calls for the observation processing of a single observed informatuon. e.g. vision may
- . By observaion enrchment, we mean to expand our provide position as well as velocity information) may provide %
observation capability. It does not necessarily call for the use of versatile and effective observation. %
extra sensors.

3. Future controllers can he an intelligent controller. The P
For example, what we see in the rear view muror about the controller will have data base for storing commands (on task

car approaching from behind provides not only the distance requirements) and rule-based algonthms tether preprogrammed
information, but also the speed information (which is derived from or accumulated from experiences). It has memory for stoning
the rate the distance is changing). This information can be used by past information for learning from experiences. The decision
the driver for speeding up the car or for changing lanes. This form making of the controller will be an expert system which consists
of indirect feedback information (denving both position and speed of a collection of basic decision makers. The control law
information from vision) does call for enhanced information generated by the controller is a collective effort of each
processing capability. Some intelligent sensor capable of individual decision maker whose participation or not is decided
information processing should be a part of the intelligent controller intelligently in a time-varying manner based upon rule-based
What has been discussed so far, such as controller input enrichment interpretations of the observed information and system
observation enrichment of the plant), controller output enrichment requirements.

,control enrichment of the plant). priority ranking in decision making
,polarity over magnitude, qualitative over quantitative in the 4. ,Ruled-based decision making will be a cdmbinarion of
nterpretaton of error signal) are simpler to address than the more qualitatve (logical and quantauve tcomputational nature. A

difficult problem of addressing the issue of correcting the error mixture of heuristic as well as deductive decision processes. In
magnitude (the quantitative aspect). As we mentioned earlier, there a hierachical decision process, the qualtatve decision i.e.
seems to be a great deal of flexibility for reducing the error even after which way the correction of error has to be) will have
the error polarity has been determined. To reduce the error precedence over that of quantitative decision (i.e. how much the
magnitude we have to work within the constraint of the control law. error correction is to be made). The quantitative decision will
Too much and too little correction for the error magnitude is equally be a time-varying process. Instead of being a continuousiy
unsatisfactory They may cause instability. Therefore, one basic varying process, a more practical way appears to be piecewise-
consideration in controller design is to ensure the systems stability, constant lime-varying process. In other words, the parameters
Even if the control action results in a stable response, too much of change are a set of finite values and their values will be
correction will cause overshoot and too little action will have a very changed at discrete instant of times decided by rule-based
sluggish response. So an intelligent controller should arbitrate algorthms.
stability and other performance conflicts. 

m --

To attain optimal performance in an ever changing 5. Rule-based algonthms are designed to ensure the stability of
environment, the controller ought to be time-varying and adaptive, the system and are used to arbitrate conflicting performance
Unfortunately. such time-varying controller can not be designed with requirements over different intervals of overall operation for

conventional methods because system parameters model is lacking. maxirmnzng the total performance.
It appears that a viable approach will be a heunsnc, rule-driven 6 n t r mo
controller that can be fine tuned. 6. An intelligent controller must be capable of learning trom

experiences and of optimizing performances in a given set of
conditions. Therefore, an intelligent controller will he a

£11, Some Thoughts on Control Design Strategies combined effort of applying results from Artificial Intelligance ,..%
(Al). Control and Signal Processing (CSP) and Operational

As was pointed out earlier, it is either impossible or Reserach (OR).
mpracncal to have a precise dynami:al model of a complex system. 7 The advancements of computer technology are making

Therefore the control design strate,-tes for such systems also calls for
changes from conventional apr,roaches which rely heavy on a intelligent controllers more feasible.

purely deductive mathematical ,iiscipline. Given below am some of 9 Integrated system design concept should be developed. Toour thou,.'hts on wahat snouliltihe when we design control systems. nertdsse eincnetsol edvlpd o"e"
ur o th e odesign an intelligent control system considerations for plant.

I. Place less emphasis on the need of charactenzing the system control capability, (actuator technologyl observation capabilty
with a precise mathematical model with known parameters (sensor technology). and controller decision making all need to
Instead. attention should be focused tn a better understanoing of be addressed at the outset Conventional control approach nt
the system inpu/uoulpt i,ni r)elitionship In other words, the starting with a given plant and then working to find a needed
'sstem is tais'e charactenzrd more exolc;tlv in terms of its cause compensator (controlleri to ensure Qatistctsorv Petriomance

and effects relationsnip More nreciselv ,peakinv. it is more shouid be discouraged Instead, we should always ask the

60
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question of "how to have the 'best' control system ('best ?
system' is not meant to be an optimal system in the traditional [111 Chouikha. M. F. and M. Y. Wu. "Learning Algorithm for
"ense) for the tasks to be accomplished?" Control Systems," to be published, the Proc. of 9th lASTED

International Symposium, Robotics and Automation, May 27-
9. We need better understanding on learning theory, time- 29, 1987, Santa Barbara, Ca.
varying and/or nonlinear control theory. con dn

(121 Anmoto. S.. et.ai., "Learning Control Theory for DynamicalShown in figures I and 2 are possible configurations of Systems," Proc. 24th Control and Decision Conference. Ft.-
.ontrol systems with intelligent controllers. Lauderdale, Fa., Dec. 1985. pp. 1375-1380.

IV. Examples

Given below am two examples on controller design based on
combination of heuristic as well as deductive reasoning. They are
tound to produce much better performances than those designed with

onventional design method.

Figure 3 shows the step response of a double-integrator that
produces a fast response without causing any overshoot. The
.-ontroller is a simple gain scheduling scheme designed by dynamic
.7ole placement argument 1101. It is based on good qualitatve
.:nderstanding of the effects of velocity loop (that affects the
iamping, and the position loop (that affects the bandwidth) on the
. stem response.

Figure 4 shows the improvement of convergence of a
learnng controller. The controller incorporates a combinauon of two
separate learning algonthms operating over two different intervals of n.,,S c ..
operations. The learning algonithm I applies only to linear system
[II j which diverges when applied to a nonlinear system. The T.. .... 6*
!earing algorithm 2 [121 applies to some nonlinear system, but .
.onverges slowly. By using learning algorithm I for start up and
then switching to algorithm 2. it is found that convergence rate for ...-.. ,-L I
nonl.near system improves significantly. "

More and more intelligent controllers using expert systems
have begun to emerge. Real-time expert systems for desalinizationsystem and robot pmng-pong game have been reported recently by 0,,,., ._

Reliable Water Inc. and AT&T respectively. Without any doubt, '-1"
intelligent control will be used more and more in the future forcontrol of complex systems.
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iraeet thetd ofreslsPtnin aplcaing totroler ase watflos esal osdr ielnert

ce.e lin oothes n that sohe l sreti iv o dinsfrp c e rror

III practice. we often face the problem of control- ~l)=yhl-yltIS
tugi iynaiical systems with incomplete or little apriorm where u,,(() and Yki I I are respectively tile input atid the

iniforimation about the plant. The solution is usualy based output of the systeri for the k-lhIt terationi, 9.11 to %,sine

,nti the application of adaptation and learning in automatic given function and '.~are some constants. rhe problem

systems5 which reduced initial uncertainty by using the in- is then to find conditions that ensures&

forinationi obtained during the process of control, Due to
&i~t I 94mdI as k - -,

lie availability of an ever-increasing computational power,
liany adaptive and learning algorithms have emerged and in some sense, for all t i.e

numerous sucresful applications have been reported II and

101 Recenitly a learning control algorithm called better- IlesliHII - U) as k - xford al

talent process was proposed by S.Arumoto et al. 121 to solvefosmeconnr.
lie particular but in practice very important case of con-

trIrolling svtems with unknown or partially known dynamics Definition

-Joc ar reqire torepetedy trck deiredtraec-The function h~l) = fe. N. *I dehned in the in-

tuvcl are itrequie to epae y aa t desie ta.ei- teril it, t2 I is said to be an i -approz'tmation of a given

tasrd Thitativpe appoh taken bydte trileot ent toi function f~t) on the interval t, f, -i with respect to a chosen
base oi a impe alontm wichupdaes he npu toset of orthogonal functions described by the vector -sjued

the system based on the previous input and a function of function:
t lie ilitferenice between the previous output and the desired

rae-.mrv. Hlowever, this method is limiuted to a certain 0 tf 2 I)~I,- *Ii!
classes ,l systemns and is applicable under certain rather .

restricted conditions. In this paper aii alternative approch if for at given positive ethere exists a number N such that
btased ,ii the representation of input-output signals hy a for all t inl 'ft ,il

set ol -,rthostomial functions is presented. Orthogonal func- or-I ~ o

toIn this Paper '(9Ff denotes the L2-norm if a square-
integrable function iit) defsned on the interval ft - g1, liy

rls work us siiptrtes in part by the tjfiue 'If Naval Research
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Lemma
Let the real vlued function it} be square- 4. It has been shown 121 that using the feedback in-

ointearable on the interval t , tz then tie e -approxiznation earization technique an fl-joint robot manipulator can
f ft is given by be transformed to a set of n decoupled second order

linear time-invariant systems. therfore the learning ai-' .gorithm presented in tis paper cana also be applied to
ft) -- c,¢,tI I . a certain class of nonlinear systems, such as robot ma-

nipulator control systems.

where
c,= i /k = ,2 ..... 1.6) '
. . 1 _3. Examples

The illustration of the two theorems presented in this

'(17) paper is given in the following two examples

( k' P. O(t dt Example I

het a The appiacability of the result of theorem I is tlus-
lhe main results of the learning process will be given i trated in this examnple. Consider the first order unear time
the following two theorems without proof. The proof can invariant system descnbeQ oy the following transfer func-
1,e found in 91. tion:
Theorem 1. 

S

Let y (t) be a given desired trajectory defined F~jI = 100 -
,wer a time inlerval :t,tj and let ekit) be as defined in 5-0.9 %
,1.31 and ei;tI be its t -approximation with respect to 4. For easy checking with analytic result let the desired out-
Also let put ,itl ) be

SL )@) = P l.8-I'

where P is a N . constant matrix, and L is the linear y (t= 3.4641W - 073205
.,perator representing the system. Then which can also be written as in (1.5 1

- 0 ask - - 11.91 wft) = citi t) + C2 .0 2 )t) .1

if aisd only if where

(( r(Pl)2 , .V€ c - l)1P J 11 )c

c5 -
..

where ,,P'. and trP are the Forbenious norm and the trace
o.f P respectively, and::: Q tt-..

It is noted that condition (1.10) is somewhat re- plt) = 3t -3 N/3
strictive and may not be satisfied for certain class of linear "
systeins. This condition can be relaxed by the following are two Legendre functions. ii this case N 2 and

Theorem 2. P= .19  99
For the problem considered in theorem I and a C t

Kiven desired trajectory yjIt ) defined over the time interval the condition 11.10) is satisfied and the algorithm 1.1 I
tl. t, 1, and for a given set of orthogonal functions defined converges in 2 iterations as it is shown in figure 1.
by time vector valued function 4 if there exists a constant

. matrix which satisfies the following coudition Example 2
Consider the following system:

1.5" 
z = Az + Bu

then Y = Cz
- 0 as k -

where
C'omments rr1

1. The generalization of theorem I and theorem 2 to the Z2j
case of mnulti-dimensional linear systems is straight 0
forward. A - 1  2 Bv 1  C'= 0

2. The computational complexity of the learning algo-
rithm may depends on the types of the orthogonal and the desired output ts
functions clhosen lln the t-approximnation.

3. If P is nonsingular thent the best choice for Q is

Q P-T

-''5.
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-I:1 Ra , G P. Po sta nit -.rz iioia func -

;or t .in . Fu i vtrireciilii -0 fteions and their application to systemis arid controi

,rei I is ko satisneti. however by choosinig a set of -,Springer- Verlag 1983.

Legendre tunctions with a iatrix 12n Wu, MtY., and Arboux. NI '('ontroder design -i

-00.58 177 64 -u6.63 190.,0 a multi-joint robot Manipulator'" Proc ot the th"

I 0 8. 1 lASTED Internationai symposium ,u obotics and

- 1if.A0 270.66 -104.80 .1 automation May 1985 pp 4-6 %

-190.70 299 10 - 306.b0 230.50/

.o)r which conditiotn i.11) is satisfied. yi 1) converges to

}t ) tin 4 iterations ast is shown ii1 figure 2. We notice also
-.hat since in this example CB = 0. the cotittoits for the

convergence of the LC-type betterment as has been shown.
t 3;,, ,. are not satisfied. Figure j shows the divergence

" ,)f yJ&iii from the desired trajectory y~ttf as the number
, ot iteration k gets larger. However. for a system with the

same matrices .4 and B as the system considered it this -3

"xample but with matrix C equal to

I'.< L,' ~ ~C = ,0 1 .o-/

Ike C' type betterment converges as it is shown in figure .

i 
'

.
'
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